Encyclopedia of Lunar Science

Living Edition
| Editors: Brian Cudnik

Early Geologic History of the Moon

  • Min Ding
  • Nan Zhang
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-05546-6_8-1


The Moon provides a unique window into the early evolution of terrestrial planets, which is inaccessible on other planets due to the obliteration of their early surfaces by plate tectonics and long-term erosion. Since its formation at ~4.5 Ma, the Moon has recorded and preserved the entire history of planet differentiation, volcanic processes, and exterior impact cratering processes. Estimations of the early lunar impact flux and magmatism have profound implications to the more complex evolution of the solar system, Earth-Moon system, and other terrestrial planets.

Since space age, our knowledge of the lunar geologic evolution has mainly come from returned samples, meteorites, in situ measurements, and remote-sensing observations. The Apollo missions from 1969 to 1972 revolutionized the lunar and planetary science by virtue of the invaluable returned samples, seismic data, and heat flux measurements (Crawford et al. 2014). Fundamental hypotheses, including the giant...

This is a preview of subscription content, log in to check access.



This work was supported by NSFC41674098 to NZ.


  1. Antonenko I (1999) Global estimates of cryptomare deposits: implications for lunar volcanism. J Soc Biblic Lit Exeg 30:43–120Google Scholar
  2. Antonenko I, Head JW, Mustard JF, Hawke BR (1995) Criteria for the detection of lunar cryptomaria. Earth Moon Planets 69:141–172ADSCrossRefGoogle Scholar
  3. Besserer J, Nimmo F, Wieczorek MA, et al (2013) Theoretical and observational constraints on lunar mega-regolith thickness. In: 44th Lunar and planetary science conference. Abstract 2463Google Scholar
  4. Besserer J, Nimmo F, Wieczorek MA et al (2014) GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys Res Lett 41:5771–5777.  https://doi.org/10.1002/2014GL060240 ADSCrossRefGoogle Scholar
  5. Brandon A (2007) Planetary science: a younger Moon. Nature 450:1169–1170.  https://doi.org/10.1038/4501169a ADSCrossRefGoogle Scholar
  6. Canup RM (2012) Forming a Moon with and Earth-like composition via a giant impact. Science 338:1052–1055.  https://doi.org/10.1126/science.1226073. ADSCrossRefGoogle Scholar
  7. Cashore J, Woronow A (1985) A new Monte Carlo model of lunar megaregolith development. J Geophys Res Solid Earth 90:C811–C815.  https://doi.org/10.1029/JB090iS02p0C811 ADSCrossRefGoogle Scholar
  8. Cintala MJ, Grieve RAF (1998) Scaling impact melting and crater dimensions: implications for the lunar cratering record. Meteorit Planet Sci 33:889–912.  https://doi.org/10.1111/j.1945-5100.1998.tb01695.x ADSCrossRefGoogle Scholar
  9. Crawford IA, Joy KH, Anand M (2014) Lunar exploration. In: Spohn T, Breuer D, Johnson TV (eds) Encyclopedia of the solar system. Elsevier, Boston, pp 555–579CrossRefGoogle Scholar
  10. Davenport JD (2016) Lunar magma ocean. In: Cudnik B (ed) Encyclopedia of lunar science. Springer, Cham, pp 1–5Google Scholar
  11. de Vries J, van den Berg A, van Westrenen W (2010) Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates. Earth Planet Sci Lett 292:139–147.  https://doi.org/10.1016/j.epsl.2010.01.029 ADSCrossRefGoogle Scholar
  12. Ding M, Soderblom JM, Zuber MT, Bierson CJ, Nimmo F, Milbury C (2016) Target porosity controls crater residual Bouguer anomaly in the lunar highlands. In: 47th Lunar Planet Sci Conf. Abstract 2632Google Scholar
  13. Dwyer CA, Stevenson DJ, Nimmo F (2011) A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479:212–214ADSCrossRefGoogle Scholar
  14. Elkins-Tanton LT, Burgess S, Yin Q-Z (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304:326–336.  https://doi.org/10.1016/j.epsl.2011.02.004 ADSCrossRefGoogle Scholar
  15. Elkins-Tanton L (2012) Magma oceans in the inner solar system. Annu Rev Earth Planet Sci 40:113–139ADSCrossRefGoogle Scholar
  16. Evans AJ, Zuber MT, Weiss BP, Tikoo SM (2014) A wet, heterogeneous lunar interior: lower mantle and core dynamo evolution. J Geophys Res Planets 119:1061–1077.  https://doi.org/10.1002/2013JE004494 ADSCrossRefGoogle Scholar
  17. Fagan AL (2015) Volcanic and impact processes on the Moon. In: Cudnik B (ed) Encyclopedia of lunar science. Springer, Cham, pp 1–7Google Scholar
  18. Fassett CI, Head JW, Kadish SJ et al (2012) Lunar impact basins: stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data. J Geophys Res Planets 117.  https://doi.org/10.1029/2011JE003951
  19. Garrick-Bethell I, Weiss BP, Shuster DL, Tikoo SM, Tremblay MM (2016) Further evidence for early lunar magnetism from troctolite 76535. J Geophys Res Planets 121.  https://doi.org/10.1002/2016JE005154
  20. Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469.  https://doi.org/10.1038/nature03676 ADSCrossRefGoogle Scholar
  21. Gross J, Joy KH (2016) Evolution, lunar: from magma ocean to crust formation. In: Cudnik B (ed) Encyclopedia of lunar science. Springer, Cham, pp 1–20Google Scholar
  22. Hartmann W (1980) Dropping stones in magma oceans: effects of early lunar cratering. Proc Lunar Highland Crust Conf 155–171Google Scholar
  23. Hartmann WK (2003) Megaregolith evolution and cratering cataclysm models – lunar cataclysm as a misconception (28 years later). Meteorit Planet Sci 38:579–593.  https://doi.org/10.1111/j.1945-5100.2003.tb00028.x ADSCrossRefGoogle Scholar
  24. Head JW, Wilson L (1992) Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta 56:2155–2175.  https://doi.org/10.1016/0016-7037(92)90183-J ADSCrossRefGoogle Scholar
  25. Head JW, Fassett CI, Kadish SJ et al (2010) Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science 329:1504–1507.  https://doi.org/10.1126/science.1195050 ADSCrossRefGoogle Scholar
  26. Hiesinger H (2006) New views of lunar geoscience: an introduction and overview. Rev Mineral Geochem 60:1–81.  https://doi.org/10.2138/rmg.2006.60.1 CrossRefGoogle Scholar
  27. Hood LL, Artemieva NA (2008) Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193:485–502ADSCrossRefGoogle Scholar
  28. Horz F, Grieve R, Heiken G, Spudis P, Binder A (1991) Lunar surface processes. In: Heiken G, Vaniman D, French B (eds) Lunar source book – a user guide to the Moon. Cambridge University Press, Houston, pp 61–120Google Scholar
  29. Hurwitz D, Kring D (2014) Differentiation of the South Pole–Aitken basin impact melt sheet: Implications for lunar exploration. J Geophys Res 119:1110–1133.  https://doi.org/10.1002/2013JE004530 CrossRefGoogle Scholar
  30. Jolliff BL, Gillis JJ, Haskin LA et al (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res Planets 105:4197–4216.  https://doi.org/10.1029/1999JE001103 CrossRefGoogle Scholar
  31. Kendall JD, Johnson BC, Bowling TJ, Melosh HJ (2015) Ejecta from the South Pole-Aitken basin-forming impact: dominant source of farside lunar highlands. In: 46th lunar planetary science conference. Abstract 2765Google Scholar
  32. Laneuville M, Wieczorek MA, Breuer D, Tosi N (2013) Asymmetric thermal evolution of the Moon. J Geophys Res Planets 118:1435–1452.  https://doi.org/10.1002/jgre.20103 ADSCrossRefGoogle Scholar
  33. Laneuville M, Wieczorek MA, Breuer D, Aubert J, Morard G, Rückriemen T (2014) A long-lived lunar dynamo powered by core crystallization. Earth Planet Sci Lett 401:251–260ADSCrossRefGoogle Scholar
  34. Lawrence K, Tauxe L, Johnson CL, Gee J (2008) Lunar paleointensity measurements: implications for lunar magnetic evolution. Phys Earth Planet Inter 168:71–87ADSCrossRefGoogle Scholar
  35. Le Bars M, Wieczorek MA, Karatekin Ö, Cébron D, Laneuville M (2011) An impact-driven dynamo for the early Moon. Nature 479:215–218ADSCrossRefGoogle Scholar
  36. Lin Y, Tronche E, Steenstra E, van Westrenen W (2017) Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean. Nat Geosci 10:14.  https://doi.org/10.1038/NGEO2845 ADSCrossRefGoogle Scholar
  37. NRC (2007) The scientific context for exploration of the Moon: final report. National Academies Press, Washington, DCGoogle Scholar
  38. Parmentier EM, Zhong S, Zuber MT (2002) Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP. Earth Planet Sci Lett 201:473–480ADSCrossRefGoogle Scholar
  39. Pernet-Fisher JF, Joy KH (2016) The lunar highlands: old crust, new ideas. Astron Geophys 57:1.26–1.30.  https://doi.org/10.1093/astrogeo/atw039 CrossRefGoogle Scholar
  40. Petro NE, Pieters CM (2008) The lunar-wide effects of basin ejecta distribution on the early megaregolith. Meteorit Planet Sci 43:1517–1529.  https://doi.org/10.1111/j.1945-5100.2008.tb01025.x ADSCrossRefGoogle Scholar
  41. Rasmussen KL, Haack H, Warren PH (1990) Megaregolith insulation and the duration of cooling to isotopic closure within differentiated asteroids and the Moon. In: 21th lunar and planetary science conference, p 999Google Scholar
  42. Rolf T, Zhu M-H, Wünnemann K, Werner SC (2017) The role of impact bombardment history in lunar evolution. Icarus 286:138–152ADSCrossRefGoogle Scholar
  43. Schmerr N, Han S-C (2014) Seismic and gravity modeling of the lunar megaregolith. In: 45th lunar and planetary science conference. Abstract 2632Google Scholar
  44. Schultz PH, Crawford DA (2008) Consequences of forming the South Pole-Aitken basin. In: 41th lunar and planetary science conference. Abstract 2451Google Scholar
  45. Shea EK, Weiss BP, Cassata WS, Shuster DL, Tikoo SM, Gattacceca J, Grove TL, Fuller MD (2012) A long-lived lunar core dynamo. Science 335:453–456ADSCrossRefGoogle Scholar
  46. Shearer CK, Hess PC, Wieczorek MA et al (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518.  https://doi.org/10.2138/rmg.2006.60.4 CrossRefGoogle Scholar
  47. Shearer CK, Elardo SM, Petro NE et al (2015) Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. Am Mineral 100:294–325.  https://doi.org/10.2138/am-2015-4817 ADSCrossRefGoogle Scholar
  48. Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56:3809–3823.  https://doi.org/10.1016/0016-7037(92)90172-F ADSCrossRefGoogle Scholar
  49. Snyder GA, Taylor LA, Halliday AN (1995) Chronology and petrogenesis of the lunar highlands alkali suite: cumulates from KREEP basalt crystallization. Geochim Cosmochim Acta 59:1185–1203.  https://doi.org/10.1016/0016-7037(95)00034-W ADSCrossRefGoogle Scholar
  50. Taylor GJ, Wieczorek MA (2014) Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment. Phil Trans R Soc A 372:20130242.  https://doi.org/10.1098/rsta.2013.0242 ADSCrossRefGoogle Scholar
  51. Taylor SR, Pieters CM, MacPherson GJ (2006) Earth-Moon system, planetary science, and lessons learned. Rev Mineral Geochem 60:657–704.  https://doi.org/10.2138/rmg.2006.60.7 CrossRefGoogle Scholar
  52. Warren PH, Haack H, Rasmussen KL (1991) Megaregolith insulation and the duration of cooling to isotopic closure within differentiated asteroids and the Moon. J Geophys Res 96:5909–5923.  https://doi.org/10.1029/90JB02333 ADSCrossRefGoogle Scholar
  53. Weiss B, Tikoo S (2014) The lunar dynamo. Science 346:1246753.  https://doi.org/10.1126/science.1246753 CrossRefGoogle Scholar
  54. Whitten JL, Head JW (2015) Lunar cryptomaria: physical characteristics, distribution, and implications for ancient volcanism. Icarus 247:150–171.  https://doi.org/10.1016/j.icarus.2014.09.031 ADSCrossRefGoogle Scholar
  55. Wieczorek MA, Phillips RJ (2000) The “Procellarum KREEP terrane”: implications for mare volcanism and lunar evolution. J Geophys Res Planets 105:20417–20430.  https://doi.org/10.1029/1999JE001092 CrossRefGoogle Scholar
  56. Wieczorek MA, Neumann GA, Nimmo F et al (2013) The crust of the Moon as seen by GRAIL. Science 339:671–675.  https://doi.org/10.1126/science.1231530 ADSCrossRefGoogle Scholar
  57. Wilhelms DE, McCauley JF, Trask NJ (1987) The geologic history of the Moon. US Geological Survey, Washington, Paper 1348Google Scholar
  58. Zhang N, Parmentier EM, Liang Y (2013) A 3D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification. J Geophys Res Planets 118:1–16.  https://doi.org/10.1029/jgre.20121 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Earth and Space SciencesPeking UniversityBeijingChina
  2. 2.Department of Applied GeologyCurtin UniversityPerthAustralia

Section editors and affiliations

  • Nicolle E. B. Zellner
    • 1
  1. 1.Department of PhysicsAlbion CollegeAlbionUSA