Encyclopedia of Lunar Science

Living Edition
| Editors: Brian Cudnik

Lunar Interior, Geophysical Models

  • Walter S. KieferEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-05546-6_79-1


Our understanding of the Moon’s internal structure is based primarily on the results from experiments deployed by the Apollo 11–17 missions. Most of these experiments were operated from 1969 to 1977, although the laser ranging network continues to be used. The best measurements of internal structure are derived from seismic studies, which provide information about the variation of seismic velocity and mineralogy with depth. Electromagnetic sounding using a combination of surface and orbital magnetometers provides constraints on how electrical conductivity varies with depth in the Moon; in turn, this helps to constrain some aspects of core and mantle composition, particularly metal and water content, along with temperature. Laser ranging measures how the Moon deforms and changes its rotation rate in response to tidal forces; these changes are related to the distribution of mechanically weak layers inside the Moon. Measurements of the Moon’s heat flow determine the rate at...

This is a preview of subscription content, log in to check access.



  1. Besserer J, Nimmo F, Wieczorek MA et al (2014) GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys Res Lett 41:5771–5777ADSCrossRefGoogle Scholar
  2. Bulow RC, Johnson CL, Bills BG, Shearer PM (2007) Temporal and spatial properties of some deep moonquake clusters. J Geophys Res 112:E09003.  https://doi.org/10.1029/2006JE002847 ADSCrossRefGoogle Scholar
  3. Elardo SM, Draper DS, Shearer CK (2011) Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75:3024–3045ADSCrossRefGoogle Scholar
  4. Elkins-Tanton LT, Burgess S, Yin Q-Z (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochemistry. Earth Planet Sci Lett 304:326–336ADSCrossRefGoogle Scholar
  5. Gagnepain-Beyneix J, Lognonné P, Chenet H et al (2006) A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys Earth Planet Int 159:140–166ADSCrossRefGoogle Scholar
  6. Garcia RF, Gagnepain-Beyneix J, Chevrot S, Lognonné P (2011) Very preliminary reference Moon model. Phys Earth Planet Int 188:96–113ADSCrossRefGoogle Scholar
  7. Hood LL, Mitchell DL, Lin RP et al (1999) Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector Magnetometer data. Geophys Res Lett 26:2327–2330ADSCrossRefGoogle Scholar
  8. Jansen JC, Andrews-Hanna JC, Li Y et al (2017) Small-scale density variations in the lunar crust revealed by GRAIL. Icarus 291:107–123ADSCrossRefGoogle Scholar
  9. Karato S (2013) Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon. Earth Planet Sci Lett 384:144–153ADSCrossRefGoogle Scholar
  10. Khan A, Maclennan J, Taylor SR, Connolly JAD (2006) Are the Earth and Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling. J Geophys Res 111:E05005.  https://doi.org/10.1029/2005JE002608 ADSGoogle Scholar
  11. Khan A, Pommier A, Neumann GA, Mosegaard K (2013) The lunar moho and the internal structure of the Moon: a geophysical perspective. Tectonophys 609:331–352CrossRefGoogle Scholar
  12. Kiefer WS (2013) Gravity constraints on the subsurface structure of the Marius Hills: the magmagic plumbing of the largest lunar volcanic dome complex. J Geophys Res: Planets 118:733–745ADSCrossRefGoogle Scholar
  13. Laneuville M, Wieczorek MA, Breuer D, Tosi N (2013) Asymmetric thermal evolution of the Moon. J Geophys Res: Planets 118:1435–1452ADSCrossRefGoogle Scholar
  14. Matsuyama I, Nimmo F, Keane JT et al (2016) GRAIL, LLR, and LOLA constraints on the interior structure of the Moon. Geophys Res Lett 43:8365–8375ADSCrossRefGoogle Scholar
  15. Nakamura Y (2005) Farside deep moonquakes and deep interior of the Moon. J Geophys Res 110:E01001.  https://doi.org/10.1029/2004JE002332
  16. Nakamura Y, Latham GV, Dorman HJ et al (1979) Shallow moonquakes: depth, distribution and implications as to the present state of the lunar interior. Proc Lunar Planet Sci Conf 10:2299–2309ADSGoogle Scholar
  17. National Research Council Committee on the Planetary Science Decadal Survey (2011) Vision and voyages for planetary science in the decade 2013–2022. National Research Council, Washington, DC. 382 pagesGoogle Scholar
  18. Neumann GA, Zuber MT, Wieczorek MA et al (2015) Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Sci Adv 1:e1500852.  https://doi.org/10.1126/sciadv.1500852 ADSCrossRefGoogle Scholar
  19. Qin C, Muirhead AC, Zhong S (2012) Correlation of deep moonquakes and mare basalts: implications for lunar mantle structure and evolution. Icarus 220:100–105ADSCrossRefGoogle Scholar
  20. Rai N, van Westrenen W (2014) Lunar core formation: new constraints from metal–silicate partitioning of siderophile elements. Earth Planet Sci Lett 388:343–352ADSCrossRefGoogle Scholar
  21. Righter K (2002) Does the Moon have a metallic core? Icarus 158:1–13ADSCrossRefGoogle Scholar
  22. Shearer CK, Hess PC, Wieczorek MA et al (2006) Thermal and magmatic evolution of the Moon. In: New views of moon, Reviews in mineralogy and geochemistry, Mineralogical Society of America Chantilly, Virginia USA, vol 60, pp 365–518Google Scholar
  23. Shimizu H, Matsushima M, Takahashi F et al (2013) Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite. Icarus 222:32–43ADSCrossRefGoogle Scholar
  24. Siegler MA, Smrekar SE (2014) Lunar heat flow: regional prospective of the Apollo landing sites. J Geophys Res: Planets 119:47–63ADSCrossRefGoogle Scholar
  25. Sori MM, Zuber MT, Head JW, Kiefer WS (2016) Gravitational search for cryptovolcanism on the Moon: evidence for large volumes of early igneous activity. Icarus 273:284–295ADSCrossRefGoogle Scholar
  26. Weber RC, Bills BG, Johnson CL (2009) Constraints on deep moonquake focal mechanisms through analyses of tidal stress. J Geophys Res 114:E05001.  https://doi.org/10.1029/2008JE003286 ADSCrossRefGoogle Scholar
  27. Weber RC, Lin P, Garnero EJ et al (2011) Seismic detection of the lunar core. Science 331:309–312ADSCrossRefGoogle Scholar
  28. Wieczorek MA, Jolliff BL, Khan A et al (2006) The constitution and structure of the lunar interior. In: New views of moon, Reviews in mineralogy and geochemistry, Mineralogical Society of America Chantilly, Virginia USA, vol 60, pp 221–364Google Scholar
  29. Wieczorek MA, Neumann GA, Nimmo F et al (2013) The crust of the Moon as seen by GRAIL. Science 339:671–675ADSCrossRefGoogle Scholar
  30. Williams JG, Konopliv AS, Boggs DH et al (2014) Lunar interior properties from the GRAIL mission. J Geophys Res: Planets 119:1546–1578ADSCrossRefGoogle Scholar
  31. Zuber MT, Smith DE, Neumann GA et al (2016) Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory mission. Science 354:438–441ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Lunar and Planetary Institute/USRAHoustonUSA

Section editors and affiliations

  • Edgar Sikko Steenstra
    • 1
  1. 1.Faculty of Earth and Life SciencesVrije UniversiteitAmsterdamThe Netherlands