Encyclopedia of Lunar Science

Living Edition
| Editors: Brian Cudnik

Differentiation of the Lunar Interior

  • Rajneesh BhutaniEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-05546-6_193-1

Definition/Description

Differentiation of the lunar interior refers to the process that started during the early history of the Moon resulting in the chemical layering of the crust, mantle, and core inside the Moon. This layered structure, to a large extent, is a consequence of the energetic formation process and results from the differences in the physical and chemical properties of the material making up the Moon. This article reviews the available observational and experimental constraints, on the chemical and physical state that form the basis to model the thermal structure and evolution of the lunar interior.

Introduction

A giant impact of a Mars-sized body with the Earth at about 4.5 Ga is the most widely accepted theory for the formation of the Moon, winning over the competing theories of co-accretion with the Earth and capture by the Earth (Canup and Asphaug 2001; Shearer et al. 2006). The numerical models simulating the impact scenario provide results consistent with most of...

This is a preview of subscription content, log in to check access.

References

  1. Barboni M, Boehnke P, Keller CB et al (2017) Early formation of the Moon 4.51 billion years ago. Sci Adv 3:e1602365.  https://doi.org/10.1126/sciadv.1602365ADSCrossRefGoogle Scholar
  2. Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712.  https://doi.org/10.1038/35089010ADSCrossRefGoogle Scholar
  3. Dauphas N, Burkhardt C, Warren P, Teng F (2014) Geochemical arguments for an impactor. Philos Trans R Soc A Math Phys Eng Sci 372:20130244.  https://doi.org/10.1098/rsta.2013.0244ADSCrossRefGoogle Scholar
  4. Elardo SM, Draper DS, Shearer CK (2011) Lunar Magma Ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75:3024–3045.  https://doi.org/10.1016/j.gca.2011.02.033ADSCrossRefGoogle Scholar
  5. Garcia RF, Gagnepain-Beyneix J, Chevrot S, Lognonné P (2011) Very preliminary reference Moon model. Phys Earth Planet Inter 188:96–113.  https://doi.org/10.1016/j.pepi.2011.06.015ADSCrossRefGoogle Scholar
  6. Hiesinger H, Head IIIJW, Wolf U et al (2011) Ages and stratigraphy of lunar mare basalts: a synthesis. In: Ambrose WA, Williams DA (eds) Recent advances and current research issues in lunar stratigraphy. Geological Society of America Special Papers 477: Page numbers: 1–51, https://doi.org/10.1130/2011.2477(01)
  7. Khan A, Connolly JAD, Pommier A, Noir J (2014) Geophysical evidence formelt in the deep lunar interior and implications for lunar evolution. J Geophys Res E Planets 119:2197–2221.  https://doi.org/10.1002/2014JE004661ADSCrossRefGoogle Scholar
  8. Kuskov OL, Kronrod EV, Kronrod VA (2019) Thermo-chemical constraints on the lunar bulk composition and the structure of a three-layer mantle. Phys Earth Planet Inter 286:1–12.  https://doi.org/10.1016/j.pepi.2018.10.011ADSCrossRefGoogle Scholar
  9. Mallik A, Ejaz T, Shcheka S, Garapic G (2019) A petrologic study on the effect of mantle overturn: Implications for evolution of the lunar interior. Geochimica et Cosmochimica Acta 250:238–250. https://doi.org/10.1016/j.gca.2019.02.014ADSCrossRefGoogle Scholar
  10. Rapp JF, Draper DS (2018) Fractional crystallization of the lunar magma ocean: updating the dominant paradigm. Meteorit Planet Sci 1455:1432–1455.  https://doi.org/10.1111/maps.13086ADSCrossRefGoogle Scholar
  11. Righter K, Go BM, Pando KA et al (2017) Phase equilibria of a low S and C lunar core: implications for an early lunar dynamo and physical state of the current core. Earth Planet Sci Lett 463:323–332.  https://doi.org/10.1016/J.EPSL.2017.02.003ADSCrossRefGoogle Scholar
  12. Shearer CK, Hess PC, Wieczorek MA et al (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518.  https://doi.org/10.2138/rmg.2006.60.4CrossRefGoogle Scholar
  13. Shearer CK, Elardo SM, Petro NE et al (2015) Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. Am Mineral 100:294–325. https://doi.org/10.2138/am-2015–4817Google Scholar
  14. Weber RC, Lin P-Y, Garnero EJ, et al (2011) Seismic detection of the Lunar core. Science (80–) 331:309 LP-312Google Scholar
  15. Williams JG, Konopliv AS, Boggs DH, et al (2014) Journal of Geophysical Research: Planets Lunar interior properties from the GRAIL mission. J Geophys Res Planet 119:1546–1578. https://doi.org/10.1002/2013JE004559ADSGoogle Scholar
  16. Young ED, Kohl IE, Warren PH, et al (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science (80–) 351:493–496.  https://doi.org/10.1126/science.aad0525ADSCrossRefGoogle Scholar
  17. Zhao Y, deVries J, VandenBerg AP, Jacobs MHG, vanWestrenen W (2019) The participation of ilmenite-bearing cumulates in lunar mantle overturn. Earth Planet Sci Lett 511:1–11. https://doi.org/10.1016/j.epsl.2019.01.022ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Earth SciencesPondicherry UniversityPuducherryIndia

Section editors and affiliations

  • K. Durga Prasad
    • 1
  1. 1.Planetary Sciences DivisionPhysical Research LaboratoryAhmedabadIndia