Mediation Analysis in Experimental Research

  • Nicole Koschate-Fischer
  • Elisabeth Schwille
Living reference work entry


This chapter introduces the conceptual and statistical basics of mediation analysis in the context of experimental research. Adopting the respective terminology, mediation analysis can be referred to as an array of quantitative methods developed to investigate the causal mechanism(s) through which an independent variable influences a dependent variable. The chapter takes a regression-based approach to mediation analysis and focuses on mediation models likely to be tested in experiments (i.e., the single mediator model, parallel and serial multiple mediator models, and conditional process models). Yet, the scope of mediation analysis beyond an experimental setting will also be touched upon. Furthermore, the chapter addresses the question how to strengthen causal inference in mediation analysis through design, the collection of additional evidence, and statistical methods. It closes with a discussion of common topics of relevance when implementing mediation analysis such as sample size and power, mean centering in conditional process analysis, coding of categorical independent variables, advantages and disadvantages of a regression-based approach to mediation analysis, and software options to perform mediation analysis.


Mediation analysis Conditional process analysis Regression analysis Bootstrapping Experiments 


  1. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.CrossRefGoogle Scholar
  2. Berger, J. (2014). Word of mouth and interpersonal communication: A review and directions for future research. Journal of Consumer Psychology, 24(4), 586–607.CrossRefGoogle Scholar
  3. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.CrossRefGoogle Scholar
  4. Bollen, K. A., & Stine, R. (1990). Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology, 20(1), 115–140.CrossRefGoogle Scholar
  5. Bullock, J. G., Green, D. P., & Ha, S. E. (2010). Yes, but what’s the mechanism? (Don’t expect an easy answer). Journal of Personality and Social Psychology, 98(4), 550–558.CrossRefGoogle Scholar
  6. Cavanaugh, L. A. (2014). Because I (don’t) deserve it: How relationship reminders and deservingness influence consumer indulgence. Journal of Marketing Research, 51(2), 218–232.CrossRefGoogle Scholar
  7. Chandon, P., Wansink, B., & Laurent, G. (2000). A benefit congruency framework of sales promotion effectiveness. Journal of Marketing, 64(4), 65–81.CrossRefGoogle Scholar
  8. Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558–577.CrossRefGoogle Scholar
  9. Cole, D. A., & Preacher, K. J. (2014). Manifest variable path analysis: Potentially serious and misleading consequences due to uncorrected measurement error. Psychological Methods, 19(2), 300–315.CrossRefGoogle Scholar
  10. Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis for field settings. Boston: Houghton Mifflin.Google Scholar
  11. Dalal, D. K., & Zickar, M. J. (2012). Some common myths about centering predictor variables in moderated multiple regression and polynomial regression. Organizational Research Methods, 15(3), 339–362.CrossRefGoogle Scholar
  12. Darlington, R. B., & Hayes, A. F. (2017). Regression analysis and linear models: Concepts, applications, and implementation. New York: Guilford Press.Google Scholar
  13. Echambadi, R., & Hess, J. D. (2007). Mean-centering does not alleviate collinearity problems in moderated multiple regression models. Marketing Science, 26(3), 438–445.CrossRefGoogle Scholar
  14. Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychological Methods, 12(1), 1–22.CrossRefGoogle Scholar
  15. Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171–185.CrossRefGoogle Scholar
  16. Fairchild, A. J., & MacKinnon, D. P. (2009). A general model for testing mediation and moderation effects. Prevention Science, 10(2), 87–99.CrossRefGoogle Scholar
  17. Frazier, P., Tix, A. P., & Barron, K. E. (2004). Testing moderator and mediator effects in counseling psychology research. Journal of Counseling Psychology, 51(1), 115–134.CrossRefGoogle Scholar
  18. Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18(3), 233–239.CrossRefGoogle Scholar
  19. Fritz, M. S., Taylor, A. B., & MacKinnon, D. P. (2012). Explanation of two anomalous results in statistical mediation analysis. Multivariate Behavioral Research, 47(1), 61–87.CrossRefGoogle Scholar
  20. Fritz, M. S., Cox, M. G., & MacKinnon, D. P. (2015). Increasing statistical power in mediation models without increasing sample size. Evaluation & the Health Professions, 38(3), 343–366.CrossRefGoogle Scholar
  21. Fritz, M. S., Kenny, D. A., & MacKinnon, D. P. (2016). The combined effects of measurement error and omitting confounders in the single-mediator model. Multivariate Behavioral Research, 51(5), 681–697.CrossRefGoogle Scholar
  22. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River: Pearson Prentice Hall.Google Scholar
  23. Hansen, W. B., & McNeal, R. B. (1996). The law of maximum expected potential effect: Constraints placed on program effectiveness by mediator relationships. Health Education Research, 11(4), 501–507.CrossRefGoogle Scholar
  24. Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408–420.CrossRefGoogle Scholar
  25. Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.Google Scholar
  26. Hayes, A. F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 1–22.CrossRefGoogle Scholar
  27. Hayes, A. F. (2017). Partial, conditional, and moderated moderated mediation: Quantification, inference, and interpretation. Communication Monographs.
  28. Hayes, A. F., & Cai, L. (2007). Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behavior Research Methods, 39(4), 709–722.CrossRefGoogle Scholar
  29. Hayes, A. F., & Preacher, K. J. (2010). Quantifying and testing indirect effects in simple mediation models when the constituent paths are nonlinear. Multivariate Behavioral Research, 45(4), 627–660.CrossRefGoogle Scholar
  30. Hayes, A. F., & Preacher, K. J. (2014). Statistical mediation analysis with a multicategorical independent variable. British Journal of Mathematical and Statistical Psychology, 67(3), 451–470.CrossRefGoogle Scholar
  31. Hayes, A. F., & Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis does method really matter? Psychological Science, 24(10), 1918–1927.CrossRefGoogle Scholar
  32. Hayes, A. F., Montoya, A. K., & Rockwood, N. J. (2017). The analysis of mechanisms and their contingencies: PROCESS versus structural equation modeling. Australasian Marketing Journal, 25(1), 76–81.CrossRefGoogle Scholar
  33. Hoyle, R. H., & Kenny, D. A. (1999). Sample size, reliability, and tests of statistical mediation. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 195–222). Thousand Oaks: Sage.Google Scholar
  34. Iacobucci, D. (2012). Mediation analysis and categorical variables: The final frontier. Journal of Consumer Psychology, 22(4), 582–594.CrossRefGoogle Scholar
  35. Iacobucci, D., Saldanha, N., & Deng, X. (2007). A meditation on mediation: Evidence that structural equations models perform better than regressions. Journal of Consumer Psychology, 17(2), 139–153.CrossRefGoogle Scholar
  36. Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15(4), 309–334.CrossRefGoogle Scholar
  37. Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765–789.CrossRefGoogle Scholar
  38. Imai, K., Tingley, D., & Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(1), 5–51.CrossRefGoogle Scholar
  39. Jacoby, J., & Sassenberg, K. (2011). Interactions do not only tell us when, but can also tell us how: Testing process hypotheses by interaction. European Journal of Social Psychology, 41(2), 180–190.CrossRefGoogle Scholar
  40. James, L. R., Mulaik, S. A., & Brett, J. M. (2006). A tale of two methods. Organizational Research Methods, 9(2), 233–244.CrossRefGoogle Scholar
  41. Jose, P. E. (2013). Doing statistical mediation and moderation. New York: Guilford Press.Google Scholar
  42. Judd, C. M., & Kenny, D. A. (1981). Process analysis estimating mediation in treatment evaluations. Evaluation Review, 5(5), 602–619.CrossRefGoogle Scholar
  43. Kelley, K. (2007). Methods for the behavioral, educational, and social sciences: An R package. Behavior Research Methods, 39(4), 979–984.CrossRefGoogle Scholar
  44. Kenny, D. A. (2008). Reflections on mediation. Organizational Research Methods, 11(2), 353–358.CrossRefGoogle Scholar
  45. Kenny, D. A., & Judd, C. M. (2014). Power anomalies in testing mediation. Psychological Science, 25(2), 334–339.CrossRefGoogle Scholar
  46. Kisbu-Sakarya, Y., MacKinnon, D. P., & Miočević, M. (2014). The distribution of the product explains normal theory mediation confidence interval estimation. Multivariate Behavioral Research, 49(3), 261–268.CrossRefGoogle Scholar
  47. Koschate-Fischer, N., & Schandelmeier, S. (2014). A guideline for designing experimental studies in marketing research and a critical discussion of selected problem areas. Journal of Business Economics, 84(6), 793–826.CrossRefGoogle Scholar
  48. Koschate-Fischer, N., Stefan, I. V., & Hoyer, W. D. (2012). Willingness to pay for cause-related marketing: The impact of donation amount and moderating effects. Journal of Marketing Research, 49(6), 910–927.CrossRefGoogle Scholar
  49. Koschate-Fischer, N., Huber, I. V., & Hoyer, W. D. (2016). When will price increases associated with company donations to charity be perceived as fair? Journal of the Academy of Marketing Science, 44(5), 608–626.CrossRefGoogle Scholar
  50. Koschate-Fischer, N., Hoyer, W. D., Stokburger-Sauer, N. E., & Engling, J. (2017). Do life events always lead to change in purchase? The mediating role of change in consumer innovativeness, the variety seeking tendency, and price consciousness. Journal of the Academy of Marketing Science.
  51. Kraemer, H. C., Wilson, G. T., Fairburn, C. G., & Agras, W. S. (2002). Mediators and moderators of treatment effects in randomized clinical trials. Archives of General Psychiatry, 59(10), 877–883.CrossRefGoogle Scholar
  52. Kraemer, H. C., Kiernan, M., Essex, M., & Kupfer, D. J. (2008). How and why criteria defining moderators and mediators differ between the Baron & Kenny and MacArthur approaches. Health Psychology, 27(2S), 101–108.CrossRefGoogle Scholar
  53. Lemmer, G., & Gollwitzer, M. (2017). The “true” indirect effect won’t (always) stand up: When and why reverse mediation testing fails. Journal of Experimental Social Psychology, 69, 144–149.CrossRefGoogle Scholar
  54. Lichtenstein, D. R., Netemeyer, R. G., & Burton, S. (1995). Assessing the domain specificity of deal proneness: A field study. Journal of Consumer Research, 22(3), 314–326.CrossRefGoogle Scholar
  55. MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York: Routledge.Google Scholar
  56. MacKinnon, D. P., & Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17(2), 144–158.CrossRefGoogle Scholar
  57. MacKinnon, D. P., & Pirlott, A. G. (2015). Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis. Personality and Social Psychology Review, 19(1), 30–43.CrossRefGoogle Scholar
  58. MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A simulation study of mediated effect measures. Multivariate Behavioral Research, 30(1), 41–62.CrossRefGoogle Scholar
  59. MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding and suppression effect. Prevention Science, 1(4), 173–181.CrossRefGoogle Scholar
  60. MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–104.CrossRefGoogle Scholar
  61. MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99–128.CrossRefGoogle Scholar
  62. MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C. M. (2007a). Distribution of the product confidence limits for the indirect effect: Program PRODCLIN. Behavior Research Methods, 39(3), 384–389.CrossRefGoogle Scholar
  63. MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007b). Mediation analysis. Annual Review of Psychology, 58, 593–614.CrossRefGoogle Scholar
  64. MacKinnon, D. P., Kisbu-Sakarya, Y., & Gottschall, A. C. (2013). Developments in mediation analysis. In T. D. Little (Ed.), The Oxford handbook of quantitative methods in psychology: Volume 2: Statistical analysis (pp. 338–360). New York: Oxford University Press.Google Scholar
  65. Mathieu, J. E., & Taylor, S. R. (2006). Clarifying conditions and decision points for mediational type inferences in organizational behavior. Journal of Organizational Behavior, 27(8), 1031–1056.CrossRefGoogle Scholar
  66. Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44.CrossRefGoogle Scholar
  67. Maxwell, S. E., Cole, D. A., & Mitchell, M. A. (2011). Bias in cross-sectional analyses of longitudinal mediation: Partial and complete mediation under an autoregressive model. Multivariate Behavioral Research, 46(5), 816–841.CrossRefGoogle Scholar
  68. Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110(1), 40–48.CrossRefGoogle Scholar
  69. Montoya, A. K., & Hayes, A. F. (2017). Two condition within-participant statistical mediation analysis: A path-analytic framework. Psychological Methods, 22(1), 6–27.CrossRefGoogle Scholar
  70. Morgan-Lopez, A. A., & MacKinnon, D. P. (2006). Demonstration and evaluation of a method for assessing mediated moderation. Behavior Research Methods, 38(1), 77–87.CrossRefGoogle Scholar
  71. Muller, D., Judd, C. M., & Yzerbyt, V. Y. (2005). When moderation is mediated and mediation is moderated. Journal of Personality and Social Psychology, 89(6), 852–863.CrossRefGoogle Scholar
  72. Muthén, L. K., & Muthén, L. (1998). Mplus [computer software]. Los Angeles: Muthén & Muthén.Google Scholar
  73. Pek, J., & Hoyle, R. H. (2016). On the (in) validity of tests of simple mediation: Threats and solutions. Social and Personality Psychology Compass, 10(3), 150–163.CrossRefGoogle Scholar
  74. Pieters, R. (2017). Meaningful mediation analysis: Plausible causal inference and informative communication. Journal of Consumer Research, 44(3), 692–716.CrossRefGoogle Scholar
  75. Pirlott, A. G., & MacKinnon, D. P. (2016). Design approaches to experimental mediation. Journal of Experimental Social Psychology, 66, 29–38.CrossRefGoogle Scholar
  76. Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. Annual Review of Psychology, 66(1), 825–852.CrossRefGoogle Scholar
  77. Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891.CrossRefGoogle Scholar
  78. Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16(2), 93–115.CrossRefGoogle Scholar
  79. Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98.CrossRefGoogle Scholar
  80. Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42(1), 185–227.CrossRefGoogle Scholar
  81. Revelle, W. (2016). psych: Procedures for psychological, psychometric, and personality research (Version 1.6.12)., Accessed 24 July 2017.
  82. Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.CrossRefGoogle Scholar
  83. Rucker, D. D., Preacher, K. J., Tormala, Z. L., & Petty, R. E. (2011). Mediation analysis in social psychology: Current practices and new recommendations. Social and Personality Psychology Compass, 5(6), 359–371.CrossRefGoogle Scholar
  84. Savary, J., Goldsmith, K., & Dhar, R. (2014). Giving against the odds: When tempting alternatives increase willingness to donate. Journal of Marketing Research, 52(1), 27–38.CrossRefGoogle Scholar
  85. Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7(4), 422–445.CrossRefGoogle Scholar
  86. Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290–312.CrossRefGoogle Scholar
  87. Spencer, S. J., Zanna, M. P., & Fong, G. T. (2005). Establishing a causal chain: Why experiments are often more effective than mediational analyses in examining psychological processes. Journal of Personality and Social Psychology, 89(6), 845–851.CrossRefGoogle Scholar
  88. Stone-Romero, E. F., & Rosopa, P. J. (2008). The relative validity of inferences about mediation as a function of research design characteristics. Organizational Research Methods, 11(2), 326–352.CrossRefGoogle Scholar
  89. Taylor, A. B., MacKinnon, D. P., & Tein, J.-Y. (2008). Tests of the three-path mediated effect. Organizational Research Methods, 11(2), 241–269.CrossRefGoogle Scholar
  90. Thoemmes, F. (2015). Reversing arrows in mediation models does not distinguish plausible models. Basic and Applied Social Psychology, 37(4), 226–234.CrossRefGoogle Scholar
  91. Thoemmes, F., MacKinnon, D. P., & Reiser, M. R. (2010). Power analysis for complex mediational designs using Monte Carlo methods. Structural Equation Modeling, 17(3), 510–534.CrossRefGoogle Scholar
  92. Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). Mediation: R package for causal mediation analysis. Journal of Statistical Software, 59(5), 1–38.CrossRefGoogle Scholar
  93. Tofighi, D., & MacKinnon, D. P. (2011). RMediation: An R package for mediation analysis confidence intervals. Behavior Research Methods, 43(3), 692–700.CrossRefGoogle Scholar
  94. Tofighi, D., & Thoemmes, F. (2014). Single-level and multilevel mediation analysis. The Journal of Early Adolescence, 34(1), 93–119.CrossRefGoogle Scholar
  95. Touré-Tillery, M., & McGill, A. L. (2015). Who or what to believe: Trust and the differential persuasiveness of human and anthropomorphized messengers. Journal of Marketing, 79(4), 94–110.CrossRefGoogle Scholar
  96. Valeri, L., & VanderWeele, T. J. (2013). Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological Methods, 18(2), 137–150.CrossRefGoogle Scholar
  97. VanderWeele, T. J. (2015). Explanation in causal inference: Methods for mediation and interaction. New York: Oxford University Press.Google Scholar
  98. VanderWeele, T. J., & Vansteelandt, S. (2014). Mediation analysis with multiple mediators. Epidemiologic Methods, 2(1), 95–115.CrossRefGoogle Scholar
  99. Wen, Z., & Fan, X. (2015). Monotonicity of effect sizes: Questioning kappa-squared as mediation effect size measure. Psychological Methods, 20(2), 193–203.CrossRefGoogle Scholar
  100. Williams, J., & MacKinnon, D. P. (2008). Resampling and distribution of the product methods for testing indirect effects in complex models. Structural Equation Modeling: A Multidisciplinary Journal, 15(1), 23–51.CrossRefGoogle Scholar
  101. Yuan, Y., & MacKinnon, D. P. (2014). Robust mediation analysis based on median regression. Psychological Methods, 19(1), 1–20.CrossRefGoogle Scholar
  102. Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of Consumer Research, 37(2), 197–206.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of Erlangen-NurembergNurembergGermany

Personalised recommendations