Porous Silicon for Microdevices and Microsystems

  • Luca De StefanoEmail author
  • Ilaria Rea
Living reference work entry

Later version available View entry history


A literature survey is made of the various uses of both macroporous and mesoporous silicon in individual microdevices and complex microsystems. The material has been used as a silicon wafer processing tool where it is sacrificial: in a passive role where it provides, for example, thermal or electrical isolation and in an active role where it performs a range of functions. Examples include delivering drugs, sensing, emitting light, storing hydrogen, providing filtration, or having a catalytic role.


Porous Silicon Sacrificial Layer Porous Silicon Layer Electrical Isolation Mesoporous Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. (2009) Micro fuel cell applications. J New Mater Electrochem Syst 12(2–3): 93–96Google Scholar
  2. Barillaro G, Strambini LM (2008) An integrated CMOS sensing chip for NO2 detection. Sens Actuators B 134:585–590CrossRefGoogle Scholar
  3. Barillaro G, Bruschi P, Pieri F, Strambini LM (2007) CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip. Phys Stat Sol (a) 204(5):1423–1428CrossRefGoogle Scholar
  4. Barillaro G, Bruschi P, Lazzerini GM, Strambini LM (2010) Validation of the compatibility between a porous silicon-based gas sensor technology and standard microelectronic process. IEEE Sens J 10(4):893–899CrossRefGoogle Scholar
  5. Barillaro G, Merlo S, Surdo S, Strambini LM, Carpignano F (2012) Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals. Microfluid Nanofluid 12:545–552CrossRefGoogle Scholar
  6. Benecke W, Splinter A (2001) MEMS applications of porous silicon. In: Chiao JC (ed) Device and process technologies for MEMS and microelectronics II. Proc SPIE 4592: 76–87Google Scholar
  7. Bischoff T, Miller G, Welser W, Koch F (1997) Frontside micromachining using porous-silicon sacrificial-layer technologies. Sens Actuators A 60:228–234CrossRefGoogle Scholar
  8. Bomchil G, Halimaoui A, Herino R (1988) Porous silicon: the material and its applications to SO1 technologies. Microelectron Eng 8:293–310CrossRefGoogle Scholar
  9. Camara EHM, Pijolat C, Courbat J et al (2007) Microfluidic channels in porous silicon filled with a carbon absorbent for gas pre-concentration, IEEE Transducers ‘07 & Eurosensors Xxi. Digest Tech Pap, vols 1 and 2: U128–U129Google Scholar
  10. Dantas MOS, Galeazzo E, Peres HEM et al (2008) Silicon field-emission devices fabricated using the hydrogen implantation-porous silicon (HI-PS) micromachining technique. J Microelectromech Syst 17(5):1263–1269CrossRefGoogle Scholar
  11. D’arrigo G, Spinella C, Arena G, Lorenti S (2003) Fabrication of miniaturized Si-based electrocatalytic membrane. Mater Eng C 25(1–2):13–18CrossRefGoogle Scholar
  12. De Stefano L, Rendina I, Moretti L, Rossi AM (2004) Time-resolved sensing of chemical species in porous silicon optical microcavity. Sens Actuators B 100:168–172CrossRefGoogle Scholar
  13. De Stefano L, Malecki K, Della Corte FG, Moretti L, Rotiroti L, Rendina I (2006a) Integrated silicon-glass opto-chemical sensors for lab-on-chip applications. Sens Actuators B 114:625–630CrossRefGoogle Scholar
  14. De Stefano L, Rotiroti L, Rea I, Rendina I, Moretti L, Di Francia G, Massera E, Arcari P, Lamberti A, Sangez C (2006b) Porous silicon optical biochip. J Opt A Pure Appl Opt 8:S540–S544CrossRefGoogle Scholar
  15. De Stefano L, Malecki K, Della Corte FG, Moretti L, Rea I, Rotiroti L, Rendina I (2006c) A microsystem based on porous silicon-glass anodic bonding for gas and liquid optical sensing. Sensors 6:680–687CrossRefGoogle Scholar
  16. De Stefano L, Rotiroti L, Rea I, Rendina I, Arcari P, Lamberti A, Sanges C (2007a) DNA optical detection based on porous silicon technology: from biosensors to biochips. Sensors 7:214–221CrossRefGoogle Scholar
  17. De Stefano L, Rea I, Rotiroti L, Rendina I, Fragomeni L, Della Corte FG (2007b) An integrated hybrid optical device for sensing applications. Phys Stat Sol (c) 4(6):1946–1950CrossRefGoogle Scholar
  18. De Stefano L, Rea I, Moretti L, Della Corte FG, Rotiroti L, Alfieri D, Rendina I (2007c) An integrated pressure-driven microsystem based on porous silicon for optical monitoring of gaseous and liquid substances. Phys Stat Sol (a) 204(5):1459–1463CrossRefGoogle Scholar
  19. De Stefano L, Rea I, Rotiroti L, Iodice M, Rendina I (2007d) Optical microsystems based on a nanomaterial technology. J Phys Condens Matter 19:395008CrossRefGoogle Scholar
  20. De Stefano L, Rotiroti L, Rendina I, Rossi AM, Rossi M, D’Auria S (2007e) Biochips at work: porous silicon microbiosensor for proteomic diagnostic. J Phys Condens Matter 19:395007CrossRefGoogle Scholar
  21. Ekstrom S, Onnerfjord P, Bengtsson M et al (2000) A microsystem platform interfacing MALDI-TOF MS for high speed automated protein identification. In: Vanden Berg A, Bergveld P, Olthuis W (eds) Micro total analysis systems 2000, proceedings. Kluwer, Dordrecht, pp 455–458CrossRefGoogle Scholar
  22. Friedberger A, Kreisl P, Muller G et al (2001) A versatile and modularizable micromachining process for the fabrication of thermal microsensors and microactuators. J Micromech Microeng 11(6):623–629CrossRefGoogle Scholar
  23. Gad-el-Hak M (2010) MEMS: design and fabrication. CRC Press, Boca RatonGoogle Scholar
  24. Hirota J, Kiuchi A, Koshida N (2005) Phase array operation of nanocrystalline porous silicon ultrasonic emitters. Phys Stat Sol (c) 2(9):3298–3302CrossRefGoogle Scholar
  25. Hirschman KD, Tsybeskov L, Duttagupta SP, Fauchet PM (1996) Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384:338–341CrossRefGoogle Scholar
  26. Holke AD, Pilchowski J, Henderson HT et al (1998) Coherent macro porous silicon as a wick structure in an integrated microfluidic two-phase cooling system. In: Frazier AB, Ahn CH (eds) Proc SPIE 3515: 154–162Google Scholar
  27. Kalinowski T, Rittersma ZM, Benecke W, Binder J (2000) An advanced micromachined fermentation monitoring device. Sens Actuators B 68:281–285CrossRefGoogle Scholar
  28. Kronast W, Muller B, Siedel W et al (2001) Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap. Sens Actuators A 87(3):188–193CrossRefGoogle Scholar
  29. Lammel G, Renaud P (2000) Free-standing, mobile 3D porous silicon microstructures. Sens Actuators A 85(1–3):356–360CrossRefGoogle Scholar
  30. Lammel G, Schweizer S, Schiesser S et al (2002) Tunable optical filter of porous silicon as key component for a MEMS spectrometer. J Microelectromech Syst 11(6):815–828CrossRefGoogle Scholar
  31. Lang W, Steinera P, Richter A, Marusczyk K, Weimannb G, Sandmaier H (1994) Application of porous silicon as a sacrificial layer. Sens Actuators A 43:239–242CrossRefGoogle Scholar
  32. Lang W, Steiner P, Sandmaier H (1995) Porous silicon: a novel material for microsystems. Sens Actuators A 51(1):31–36CrossRefGoogle Scholar
  33. Lazaruk SK, Dolbik AV, Labunov VA et al (2007) Combustion and explosion of nanostructured silicon in microsystem devices. Semiconductors 41(9):1113–1116CrossRefGoogle Scholar
  34. Lee CS, Lee JD, Han CH (2000) A new wide-dimensional freestanding microstructure fabrication technology using laterally formed porous silicon as a sacrificial layer. Sens Actuators A 84(1–2):181–185CrossRefGoogle Scholar
  35. Liu Z, Ding Y, Liu L, Li Z (2003) Fabrication planar coil on oxide membrane hollowed with porous silicon as sacrificial layer. Sens Actuators A 108:112–116CrossRefGoogle Scholar
  36. Lysenko V, Perichon S, Remaki B, Barbier D (2002) Thermal isolation in microsystems with porous silicon. Sens Actuators A 99:13–24CrossRefGoogle Scholar
  37. Mery E, Alekseev S, Portet-Koltalo F, Morin C, Barbier D, Zaitesev V, Desbene L (2009) Porous silicon based microdevice or reversed phase liquid chromatography. Phys Stat Sol C 6(7):1777–1781CrossRefGoogle Scholar
  38. Mescheder U (2004) Porous silicon: technology and applications for micromachining and MEMS. In: Yurish SY, Gomes MTS (eds) Smart sensors and MEMS, vol 181, Nato science series, series II: mathematics, physics and chemistry. Kluwer, Dordrecht, pp 273–288CrossRefGoogle Scholar
  39. Misra SCK, Bhattacharya R, Angelucci R (2001) Integrated polymer thin film macroporous silicon microsystems. J Ind Inst ScTi 81:563–567Google Scholar
  40. Mondal B, Basu PK, Reddy BT et al (2009) Oxidized macro porous silicon layer as an effective material for thermal insulation in thermal effect microsystems. In: Chakrabarti P, Jit S, Pandey A (eds) International conference on emerging trends in electronic and photonic devices and systems, Lyon, France, pp 202–206Google Scholar
  41. Nagayama G, Ando R, Muramatsu K et al (2008) Fabrication of macroporous on no-mask silicon substrate for application to microsystems. In: Proceedings of MicroNano 2008-2nd international conference on integration and commercialization of micro and nanosystems, Tarragona, Catalunya, Spain, pp 707–708Google Scholar
  42. Ning J, Liu ZL, Liu HZ et al (2004) A silicon capacitive microphone based on oxidized porous silicon sacrificial technology. In: Huang R, Yu M, Liou JJ et al (eds) 7th international conference on solid-state and integrated circuits technology, Beijing, China, vols 1–3, pp 1872–1875Google Scholar
  43. Olivares J, Clement M, Gonzalez-Castilla S et al (2010) Porous silicon oxide sacrificial layers deposited by pulsed-direct current magnetron sputtering for microelectromechanical systems. Thin Solid Films 518(18):5128–5133CrossRefGoogle Scholar
  44. Perichon S, Lysenko V, Remaki B et al (2001) Porous silicon in microsystems: thermal isolation applications. In: Bonnaud O, Mohammed Brahim T, Strunk HP et al (eds) Polycrystalline semiconductors IV materials, technologies and large area electronics. Sol Stat Phenom 80–81:417–427Google Scholar
  45. Rajaraman S, Henderson HT (2005) A unique fabrication approach for microneedles using coherent porous silicon technology. Sens Actuators B 105(2):443–448CrossRefGoogle Scholar
  46. Rajta I, Szilasi SZ, Fuerjes P et al (2009) Si micro-turbine by proton beam writing and porous silicon micromachining, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 267(12–13):2292–2295CrossRefGoogle Scholar
  47. Rea I, Lamberti A, Rendina I, Coppola G, Gioffrè M, Iodice M, Casalino M, De Tommasi E, De Stefano L (2010) Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions. J Appl Phys 107:014513CrossRefGoogle Scholar
  48. Rea I, Orabona E, Lamberti A, Rendina I, De Stefano L (2011) A microfluidics assisted porous silicon array for optical label-free biochemical sensing. Biomicrofluidics 5:034120CrossRefGoogle Scholar
  49. Rendina I, Rea I, Rotiroti L, De Stefano L (2007) Porous silicon based optical biosensors and biochips. Physica E 38(1–2):188–192CrossRefGoogle Scholar
  50. Rittersma ZM, Splinter A, Bodecker A, Benecke W (2000) A novel surface-micromachined capacitive porous silicon humidity sensor. Sens Actuators B 68:210–217CrossRefGoogle Scholar
  51. Sim J-H, Cho C-S, Kim J-S, Lee J-H, Lee J-H (1998) Eight beam piezoresistive accelerometer fabricated by using a selective porous silicon etching method. Sens Actuators A 66:273–278CrossRefGoogle Scholar
  52. Steiner P, Lang W (1995) Micromachining applications of porous silicon. Thin Solid Films 255:52–58CrossRefGoogle Scholar
  53. Stolyarova S, Cherian S, Raiteri R, Zeravik J, Skladal P, Nemirovsky Y (2008) Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing. Sens Actuators B 131:509–515CrossRefGoogle Scholar
  54. Strambini LM, Longo A, Diligenti A, Barillaro G (2012) A minimally invasive microchip for transdermal injection/sampling applications. Lab Chip 12:3370–3379CrossRefGoogle Scholar
  55. Surdo S, Merlo S, Carpignano F, Strambini LM, Trono C, Giannetti A, Baldini F, Barillaro G (2012) Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis. Lab Chip 12:4403–4415CrossRefGoogle Scholar
  56. Torres N, Duch M, Santander J et al (2009) Porous Silicon Membrane for Micro Fuel Cell Application J. New Mater electrochem Syst 12(2–3):93–96Google Scholar
  57. Torres N, Duch M, Santander J et al (2009) Si micro-turbine by proton beam writing and porous silicon micromachining. Nucl Instr Meth Phys Res Sect B-Beam Interact Mater Atoms 267(12–13):2292–2295Google Scholar
  58. Valera E, Duch M, Rodriguez A et al (2005) Microporous silicon for CMOS compatible MST. In: Proceedings of 2005 Spanish conference on electron devices, Clear Water Bay, Kowloon, Hong Kong, pp 481–483Google Scholar
  59. Vitanov R, Goranova E, Stavrov V et al (2009) Fabrication of buried contact silicon solar cells using porous silicon. Sol Energy Mater Sol Cells 93(3):297–300CrossRefGoogle Scholar
  60. Wallner JZ, Bergstrom PL (2007) A porous silicon based particle filter for microsystem. Phys Stat Sol (a) 5:1469–1473CrossRefGoogle Scholar
  61. Xing Chen, Da-Fu Cui, Chang-Chun Liu, Hui Li (2007) Fabrication of DNA purification microchip integrated with mesoporous matrix based on MEMS technology. Microsyst Technol 14:51–57CrossRefGoogle Scholar
  62. Zellers ET et al (2007) An integrated micro-analytical system for complex vapor mixtures. In: IEEE proceedings of TRANSDUCERS & EUROSENSORS’07, Varanasi, India, pp 1491–1496Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.IMM-CNR Institute for Microelectronics and Microsystems – Unit of NaplesNational Research CouncilNaplesItaly

Personalised recommendations