Advertisement

Porous Silicon and Conductive Polymer Nanostructures via Templating

  • Farid A. HarrazEmail author
Living reference work entry

Later version available View entry history

Abstract

Conductive polymer nanostructures synthesized using porous silicon (PSi) templates are described, with an emphasis on PSi template advantages, pore-filling phenomenon, mechanism of polymerization, and selective removal of PSi to release the polymeric structures. The interaction of pyrrole monomers, as a case study, on the entire surface of PSi under both galvanostatic and potentiostatic deposition modes is presented with discussion on the processing issues associated with the electrochemical deposition process inside the pores. Additionally, various materials infiltrated into PSi templates are briefly described. Examples of free-standing conductive polymer structures formed by selective dissolution of PSi are provided.

References

  1. Akundy GS, Iroh JO (2001) Polypyrrole coatings on aluminum: synthesis and characterization. Polymer 42:9665–9669CrossRefGoogle Scholar
  2. Aravamudhan S, Luongo K, Poddar P, Srikanth H, Bhansali S (2007) Porous silicon templates for electrodeposition of nanostructures. Appl Phys A 87:773–780CrossRefGoogle Scholar
  3. Bhushan B (2004) Springer handbook of nanotechnology. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  4. Chakarvarti SK, Vetter J (1998) Template synthesis-a membrane based technology for generation of nano-micro materials: a review. Radiat Meas 29:149–159CrossRefGoogle Scholar
  5. Chen X, Steinhart M, Gösele U (2006) Ordered arrays of mesoporous microrods from recyclable macroporous silicon templates. Adv Mater 18:2135–2156Google Scholar
  6. Chourou ML, Fukami K, Sakka T, Ogata YH (2011) Gold electrodeposition into porous silicon: comparison between meso- and macroporous silicon. Phys Stat Sol (c) 8(6):1783–1786CrossRefGoogle Scholar
  7. Errien N, Froyer G, Louarn P (2005) Electrochemical growth of poly(3-dodecylthiophene) into porous silicon layers. Retho Synth Metals 150:255–258CrossRefGoogle Scholar
  8. Fan J, Wan M, Zhu D (1998) Studies on the rectifying effect of the heterojunction between porous silicon and water-soluble copolymer of polyaniline. Synth Metals 95:119–124CrossRefGoogle Scholar
  9. Fukami K, Harraz FA, Yamauchi T, Sakka T, Ogata YH (2008) Fine-tuning in size and surface morphology of rod-shaped polypyrrole using porous silicon as template. Electrochem Commun 10:56–60CrossRefGoogle Scholar
  10. Greiner A, Wendorff J (2008) Functional self-assembled nanofibers by electrospinning. In: Shimizu T (eds) Self-assembled nanomaterials I. Springer-Verlag Berlin Heidelberg, pp 107–171Google Scholar
  11. Guo D-J, Zhang H, Li J-B, Fang S-M, Dai Z-D, Tan W (2013) Fabrication and adhesion of a bio-inspired microarray: capillarity-induced casting using porous silicon mold. J Mater Chem B 1:379–386CrossRefGoogle Scholar
  12. Halliday DP, Holland ER, Eggleston JM, Adams PN, Cox SE, Monkman AP (1996) Electroluminescence from porous silicon using a conducting polyaniline contact. Thin Solid Films 276:299–302CrossRefGoogle Scholar
  13. Harraz FA (2006) Electrochemical polymerization of pyrrole into nanostructured p-type porous silicon. J Electrochem Soc 153(5):C349–C356CrossRefGoogle Scholar
  14. Harraz FA (2011) Impregnation of porous silicon with conducting polymers. Phys Stat Sol (C) 8(6):1883–1887CrossRefGoogle Scholar
  15. Harraz FA (2013) Synthesis and surface properties of magnetite (Fe3O4) nanoparticles infiltrated into porous silicon template. Appl Sur Sci 287:203–210CrossRefGoogle Scholar
  16. Harraz FA, Kamada K, Sasano J, Izuo S, Sakka T, Ogata YH (2005) Pore filling of macropores prepared in p-type silicon by copper deposition. Phys Stat Sol (a) 202(8):1683–1687CrossRefGoogle Scholar
  17. Harraz FA, Salim MS, Sakka T, Ogata YH (2008a) Hybrid nanostructure of polypyrrole and porous silicon prepared by galvanostatic technique. Electrochim Acta 53:3734–3740CrossRefGoogle Scholar
  18. Harraz FA, El-Sheikh SM, Sakka T, Ogata YH (2008b) Cylindrical pore arrays in silicon with intermediate nano-sizes: a template for nanofabrication and multilayer applications. Electrochim Acta 53:6444–6451CrossRefGoogle Scholar
  19. Harraz FA, Salem AM, Mohamed BA, Kandil A, Ibrahim IA (2013) Electrochemically deposited cobalt/platinum (Co/Pt) film into porous silicon: structural investigation and magnetic properties. Appl Surf Sci 264:391–398CrossRefGoogle Scholar
  20. Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445CrossRefGoogle Scholar
  21. Hulteen JC, Martin CR (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7:1075–1087CrossRefGoogle Scholar
  22. Johnson SA, Ollivier PJ, Mallouk TE (1999) Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283:963–965CrossRefGoogle Scholar
  23. Kobayashi K, Harraz FA, Izuo S, Sakka T, Ogata YH (2006) Microrod and microtube formation by electrodeposition of metal into ordered macropores prepared in p-type silicon. J Electrochem Soc 153(4):C218–C222CrossRefGoogle Scholar
  24. Lehmann V (1993) The physics of macropore formation in low-doped n-type silicon. J Electrochem Soc 140:2836–2843CrossRefGoogle Scholar
  25. Lewis TW, Moulton SE, Spinks GM, Wallace GG (1997) Optimization of a polypyrrole based actuator. Synth Met 85:1419–1420CrossRefGoogle Scholar
  26. Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ (2003) Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299(5615):2045–2047CrossRefGoogle Scholar
  27. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966CrossRefGoogle Scholar
  28. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746CrossRefGoogle Scholar
  29. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468CrossRefGoogle Scholar
  30. Mishra JK, Bhunia S, Banerjee S, Banerji P (2008) Photoluminescence studies on porous silicon/polymer heterostructure. J Lumin 128:1169–1174CrossRefGoogle Scholar
  31. Moller K, Bein T (1998) Inclusion chemistry in periodic mesoporous hosts. Chem Mater 10(10):2950–2963CrossRefGoogle Scholar
  32. Moreno JD, Marcos ML, Agulló-Rueda F, Guerrero-Lemus R, Martín-Palma RJ, Martínez-Duart JM, González-Velasco J (1999) A galvanostatic study of the electrodeposition of polypyrrole into porous silicon. Thin Solid Films 348:152–156CrossRefGoogle Scholar
  33. Murzina TV, Sychev FY, Kolmychek IA, Aktsipetrov OA (2007) Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium nitrite. Appl Phys Lett 90:161120CrossRefGoogle Scholar
  34. Nahor A, Berger O, Bardavid Y, Toker G, Tamar Y, Reiss L, Asscher M, Yitzchaik S, Sa’ar A (2011) Hybrid structures of porous silicon and conjugated polymers for photovoltaic applications. Phys Stat Sol (C) 8(6):1908–1912CrossRefGoogle Scholar
  35. Nguyen TP, Le Rendu P, Lakéhal M, de Kok M, Vanderzande D, Bulou A, Bardeau JP, Joubert P (2003) Filling porous silicon pores with poly(p-phenylenevinylene). Phys Stat Sol (a) 197:232–235CrossRefGoogle Scholar
  36. Ogata YH, Koyama A, Harraz FA, Salem MS, Sakka T (2007) Electrochemical formation of porous silicon with medium sized-pores. Electrochemistry 75:270–272CrossRefGoogle Scholar
  37. Raman NK, Anderson MT, Brinker CJ (1996) Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem Mater 8(8):1682–1701CrossRefGoogle Scholar
  38. Rumpf K, Granitzer P, Poelt P, Allbu M (2011) Double-sided porous silicon template for metal deposition. Phys Stat Sol (c) 8(6):1808–1811CrossRefGoogle Scholar
  39. Schultze JW, Jung KG (1995) Regular nanostructured systems formed electrochemically: deposition of electroactive polybithiophene into porous silicon. Electrochim Acta 40:1369–1383CrossRefGoogle Scholar
  40. Shimizu T (2008) Self-assembled nanomaterials I. Nanofibers, vol 219, Advances in polymer science. Springer, BerlinCrossRefGoogle Scholar
  41. Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gösele U (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296:1997–1997CrossRefGoogle Scholar
  42. Tian ML, Wang JU, Kurtz J, Mallouk TE, Chan MHW (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3:919–923CrossRefGoogle Scholar
  43. Tondare VN, Gierhart BC, Howitt DG, Smith RL, Chen SJ, Collins SD (2008) An electron microscopy investigation of the structure of porous silicon by oxide replication. Nanotechnology 19:225301, 4 ppCrossRefGoogle Scholar
  44. Vrkoslav V, Jelínek I, Broncová G, Král V, Dian J (2006) Polypyrrole-functionalized porous silicon for gas sensing applications. Mater Sci Eng C 26:1072–1076CrossRefGoogle Scholar
  45. Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Fabrication and magnetic properties of arrays of metallic nanowires. Science 261:1316–1319CrossRefGoogle Scholar
  46. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater 11(10):2813–2826CrossRefGoogle Scholar
  47. Zhang X, Tu KN, Xie YH, Tung CH (2006) High aspect ratio nickel structures fabricated by electrochemical replication of hydrofluoric acid etched silicon. Electrochem Solid State Lett 9(9):C150–C152CrossRefGoogle Scholar
  48. Zhao L, Steinhart M, Yosef M, Lee SK, Geppert T, Pippel E, Scholz R, Gösele U, Schlecht S (2005a) Lithium niobate microtubes within ordered macroporous silicon by template thermolysis of a single source precursor. Chem Mater 17:3–5CrossRefGoogle Scholar
  49. Zhao L, Yosef M, Steinhart M, Göring P, Hofmeister H, Gösele U, Schlecht S (2005b) Porous silicon and alumina as chemically reactive templates for the synthesis of tubes and wires of SnSe, Sn, and SnO2. Angew Chem Int Ed 45:311–315CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Nanostructured Materials and Nanotechnology DivisionCentral Metallurgical Research and Development Institute (CMRDI)CairoEgypt
  2. 2.Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research CentreNajran UniversityNajranSaudi Arabia

Personalised recommendations