Drying Techniques Applied to Porous Silicon

  • Leigh Canham
Living reference work entry

Latest version View entry history


Wet-etched mesoporous silicon is normally dried in the air, but this limits the range of porosities and surface areas achievable, due to capillary force-induced collapse of the silicon skeleton. This updated review discusses the various alternative drying techniques with particular attention paid to supercritical/critical point drying, a powerful technique applicable to all physical forms of porous silicon. Optimized etching and supercritical drying conditions have recently led to the achievement of silicon powder surface areas up to 1125m2/g from anodized p− wafers and pore volumes up to 4.66 ml/g from anodized p + wafers. Supercritical drying has also been used to minimize “bundling” of porous silicon nanowires in closely spaced arrays.


Porous silicon drying supercritical drying 


  1. Amato G, Brunetto N (1996) Porous silicon via freeze drying. Mater Lett 26(6):295–298CrossRefGoogle Scholar
  2. Amato G, Bullara V, Brunetto N, Boarino L (1996) Drying of porous silicon: a Raman, electron microscopy and photoluminescence study. Thin Solid Films 276(1–2):204–207CrossRefGoogle Scholar
  3. Amato G, Brunetto N, Parisini A (1997) Characterization of freeze-dried porous silicon. Thin Solid Films 297(1–2):73–78CrossRefGoogle Scholar
  4. Bellet D (1997) Chapter 1.5: Drying of porous silicon. In: Canham LT (ed) Properties of porous silicon. IEE, London, pp 38–43Google Scholar
  5. Bellet D, Canham LT (1998) Controlled drying: the key to better quality porous semiconductors. Adv Mater 10(6):487–490CrossRefGoogle Scholar
  6. Belmont O, Bellet D, Brechet Y (1996) Study of the cracking of highly porous p+ type silicon during drying. J Appl Phys 79:7588CrossRefGoogle Scholar
  7. Bhagat SD, Kim YH, Yi G, Ahn YS, Yeo JG, Choi YT (2008) Mesoporous silica powders with high specific surface area by microwave drying of hydrogels: a facile synthesis. Micro Meso Mater 108:333–339CrossRefGoogle Scholar
  8. Canham LT, Cullis AG, Pickering C, Dosser OD, Cox TI, Lynch TP (1994) Luminescent silicon aerocrystal networks prepared by anodisation and supercritical drying. Nature 368:133–135CrossRefGoogle Scholar
  9. Cao DT, Anh CT, Ngan LTQ (2016) Formation of mosaic silicon oxide structure during metal assisted electrochemical etching of silicon at high current density. J Electr Mater 45(5):2615–2620CrossRefGoogle Scholar
  10. Chamard V, Pichat C, Dolino G (2001) Rinsing and drying studies of porous silicon by high resolution X-ray diffraction. Solid State Commun 118(3):135–139CrossRefGoogle Scholar
  11. Chang SW, Chuang VP, Boles ST, Ross CA, Thompson CV (2011) Densely packed arrays of ultra-high aspect ratio silicon nanowires fabricated using block co-polymer lithography and metal assisted etching. Adv Funct Mater 19(15):2495–2500CrossRefGoogle Scholar
  12. DiFrancia G, Ferrara V, Lancellotti L, Quercia L (2000) Stress measurement technique to monitor porous silicon processing. J Porous Mater 7:319–321CrossRefGoogle Scholar
  13. Dudley ME, Kolasinski KW (2009) Structure and photoluminescence studies of porous silicon formed in ferric ion containing stain etchants. Phys Stat Solidi A6:1240–1244CrossRefGoogle Scholar
  14. Frohnhoff S, Arens-Fischer R, Heinrich T, Fricke J, Amtzen M, Theiss W (1995) Characterization of supercritical dried porous silicon. Thin Solid Films 255(1–2):115–118CrossRefGoogle Scholar
  15. Gaev DS, Rekhviashvili SS (2012) Kinetics of crack formation in porous silicon. Semiconductors 46(2):137–140CrossRefGoogle Scholar
  16. Gruning U, Yelon A (1995) Capillary and van der Waals forces and mechanical stability of porous silicon. Thin Solid Films 256(1–2):135–138CrossRefGoogle Scholar
  17. Jafri IH, Busta H, Walsh ST (1999) Critical point drying and cleaning for MEMS technology. Proc SPIE 3880. doi:10.1117/12.359371Google Scholar
  18. Joo J, Defforge T, Loni A, Kim D, Li ZY, Sailor MJ, Gautier G, Canham LT (2016) Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying. Appl Phys Lett. doi:10.1063/1.4947084Google Scholar
  19. Jung DS, Hwang TH, Park SB, Choi JW (2013) Spray drying method for large scale and high performance silicon negative electrodes in Li ion batteries. Nano Lett 13(5):2092–2097CrossRefGoogle Scholar
  20. Kim CJ, Kim JY, Sridharan B (1998) Comparative evaluation of drying techniques for surface micromachining. Sens Actuat A64:17–26CrossRefGoogle Scholar
  21. Koizumi T, Obata K, Tezuka Y, Shin S, Koshida N, Suda Y (1996) Effects of oxidation on electronic states and photoluminescence properties of porous silicon. Jpn J Appl Phys 35:L803–L806CrossRefGoogle Scholar
  22. Kolasinski KW, Barnard JC, Ganguly S, Koker L, Wellner A, Aindow M, Palmer RE, Field CN, Hamley PA, Poliakoff M (2000) On the role of the pore filling medium in photoluminescence from photochemically etched porous silicon. J Appl Phys 88(5):2472–2479CrossRefGoogle Scholar
  23. Koynov S, Pereira RN, Crnolatac I, Kovalev D, Huygens A, Chirvony V, Stutzmann M, deWitte P (2011) Purification of nanoporous silicon for biomedical applications. Adv Eng Mater 13(6):B225–B233CrossRefGoogle Scholar
  24. Lei ZK, Kang YL, Cen H, Hu M (2006) Variability on Raman shift to stress coefficient of porous silicon. Chin Phys Lett 23(6):1623–1626CrossRefGoogle Scholar
  25. Lerondel G, Amato G, Porisini A, Boarino L (2000) Porous silicon nanocracking. Mater Sci Eng B 69(70):161–166CrossRefGoogle Scholar
  26. Linsmeier J, Wust K, Schenk H, Hilpert U, Ossau W, Fricke J, Arens-Fischer R (1997) Chemical surface modification of porous silicon with tetraethoxysilane. Thin Solid Films 297:26–30CrossRefGoogle Scholar
  27. Loni A, Canham LT, Defforge T, Gautier G (2015) Supercritically dried porous silicon powders with surface areas exceeding 1000 m2/g. ECS J Solid State Sci Techn 4(8):P289–P292CrossRefGoogle Scholar
  28. Mason MD, Sirbuly DJ, Buratto SK (2002) Correlation between bulk morphology and luminescence in porous silicon investigated by pore collapse resulting from drying. Thin Solid Films 406:151–158CrossRefGoogle Scholar
  29. Nadarassan DK, Loni A, Shabir Q, Kelly C, O’Brien H, Caffull E, Webb K, Canham LT, Maniruzamman M, Trivoli V, Douroumis D (2015) Ultrahigh drug loading and release from porous silicon aerocrystals. Proc 42nd Ann Contr Rel Soc Meeting July 26–29 Edinburgh Ext Abstr No. 825Google Scholar
  30. Namatsu H, Yamazaki K, Kurihara K (1999) Supercritical drying for nanostructure fabrication without pattern collapse. Microelectron Eng 46(1–4):129–132CrossRefGoogle Scholar
  31. Oton CJ et al (2002) Scattering rings in optically anisotropic porous silicon. Appl Phys Lett 81(26):4919–4921CrossRefGoogle Scholar
  32. Pakowski Z (2007) Modern methods of drying nanomaterials. Dry Porous Mater 66:19–27CrossRefGoogle Scholar
  33. Pellegrini V, Fuso F, Lorenzi G, Allegrini M, Diligenti A, Nannini A, Pennelli G (1995) Improved optical emission of porous silicon with different postanodization processes. Appl Phys Lett 67:1084CrossRefGoogle Scholar
  34. Qiu W, Kang YL, Li Q, Lei ZK, Qin QH (2008) Experimental analysis for the effect of dynamic capillarity on stress transformation in porous silicon. Appl Phys Lett 92:041906CrossRefGoogle Scholar
  35. Ratchford D, Yeom J, Long JP, Pehrsson PE (2015) Influence of inhomogeneous porosity on silicon nanowire Raman enhancement and leaky mode modulated photoluminescence. Nanoscale 7:4124–4133CrossRefGoogle Scholar
  36. Scherer GW (1990) Theory of drying. J Am Ceram Soc 73(1):3–14CrossRefGoogle Scholar
  37. Skryshevsky VA, Vorobey G, Jamois C, Munguia J, Lysenko V (2011) Drying induced self-formation of semi-ordered nano-porous silicon micro-hairs. Phys Status Solidi C8(6):1805–1807CrossRefGoogle Scholar
  38. Von Behren J, Chimowitz EH, Fauchet PM (1997) Critical behaviour and the processing of nanoscale porous materials. Adv Mater 9:921CrossRefGoogle Scholar
  39. Wang B, Zhang W, Mujumdar AS, Huang L (2005) Progress in drying technology for nanomaterials. Dry Technol 23(1–2):7–32CrossRefGoogle Scholar
  40. Wang F, Song S, Zhang J (2009) Surface texturing of porous silicon with capillary stress and its superhydrophobicity. Chem Commun 28:4239–4241CrossRefGoogle Scholar
  41. Wang D, Ji R, Albrecht A, Schaaf P (2013) Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells. Nanoscale Res Lett 8(42):1–9Google Scholar
  42. Xu SH, Wang LW (2009) Porous silicon microtube structures induced by anisotropic strain. J Appl Phys 106:073516CrossRefGoogle Scholar
  43. Xu D, Guo G, Gui L, Tang Y, Zhang B, Qin G (1998) Preparation and characterisation of freestanding porous silicon films with high porosities. Electrochem Solid State Lett 1(5):227–229CrossRefGoogle Scholar
  44. Yeom J, Ratchford D, Field CR, Brintlinger TH (2014) Decoupling diameter and pitch in silicon nanowire arrays made by metal assisted chemical etching. Adv Funct Mater 24:106–116CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of BirminghamBirminghamUK

Personalised recommendations