Biocompatibility of Porous Silicon

  • Suet P. LowEmail author
  • Nicolas H. Voelcker
Living reference work entry


The biocompatibility of porous silicon is critical to its potential biomedical uses, both in vivo within the human body for therapy and diagnostics, and in vitro for biosensing and biofiltration. Published data from cell culture and in vivo studies are reviewed, and a number of emerging applications for bioactive or biodegradable silicon are discussed.


Porous Silicon Simulated Body Fluid Silicic Acid Bone Tissue Engineering Fibrous Capsule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ainslie KM, Tao SL, Popat KC, Desai TA (2008) In vitro immunogenicity of silicon-based micro- and nanostructured surfaces. ACS Nano 2(5):1076–1084CrossRefGoogle Scholar
  2. Allongue P, Costa-Kieling V, Gerischer H (1993) Etching of silicon in NaOH solutions. J Electrochem Soc 140(4):1018–1026CrossRefGoogle Scholar
  3. Anderson SHC, Elliot H, Wallis DJ, Canham LT, Powell JJ (2003) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Status Solidi A 197(2):331–335CrossRefGoogle Scholar
  4. Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliver Rev 60(11):1266–1277CrossRefGoogle Scholar
  5. Bayliss SC, Harris P, Buckberry LD, Rousseau C (1997) Phosphate and cell growth on nanostructured semiconductors. J Mater Sci Lett 16:737–740CrossRefGoogle Scholar
  6. Bayliss SC, Heald R, Fletcher DI, Buckberry LD (1999) The culture of mammalian cells on nanostructured silicon. Adv Mater (Weinheim, Ger) 11(4):318–321CrossRefGoogle Scholar
  7. Belyakov L, Goryachev D, Sreseli O (2007) Role of singlet oxygen in formation of nanoporous silicon. Semiconductors 41(12):1453–1456CrossRefGoogle Scholar
  8. Ben-Tabou de Leon S, Sa'ar A, Oren R, Spira ME, Yitzchaik S (2004) Neurons culturing and biophotonic sensing using porous silicon. Appl Phys Lett 84(22):4361–4363CrossRefGoogle Scholar
  9. Bimbo LM, Sarparanta M, Santos H l A, Airaksinen AJ, Mäkilä E, Laaksonen T, Peltonen L, Lehto VP, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4(6):3023–3032CrossRefGoogle Scholar
  10. Brecht A, Gauglitz G (1995) Optical probes and transducers. Biosens Bioelectron 10:923–936CrossRefGoogle Scholar
  11. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048CrossRefGoogle Scholar
  12. Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater (Weinheim, Ger) 7(12):1033–1037CrossRefGoogle Scholar
  13. Canham LT, Newey JP, Reeves CL, Houlton MR, Loni A, Simons AJ, Cox TI (1996) The effects of DC electric currents on the in-vitro calcification of bioactive silicon wafers. Adv Mater (Weinheim, Ger) 8(10):847–849CrossRefGoogle Scholar
  14. Canham LT, Reeves CL, Newey JP, Houlton MR, Cox TI, Buriak JM, Stewart MP (1999) Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater (Weinheim, Ger) 11(18):1505–1507CrossRefGoogle Scholar
  15. Canham LT, Stewart MP, Buriak JM, Reeves CL, Anderson M, Squire EK, Allcock P, Snow PA (2000) Derivatized porous silicon mirrors: implantable optical components with slow resorbability. Physica Status Solidi A 182(1):521–525CrossRefGoogle Scholar
  16. Carlisle EM (1972) Silicon: an essential element for the chick. Science 178(4061):619–621CrossRefGoogle Scholar
  17. Carlisle EM (1982) The nutritional essentiality of silicon. Nutr Rev 40(7):193–198CrossRefGoogle Scholar
  18. Chan S, Fauchet PM, Li Y, Rothberg LJ, Miller BL (2000) Porous silicon microcavities for biosensing applications. Physica Status Solidi A 182(1):541–546CrossRefGoogle Scholar
  19. Cheng L, Anglin E, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR (2008) Intravitreal properties of porous silicon photonic crystals: a potential self-reporting iIntraocular drug-delivery vehicle (Laboratory Science)(Clinical Report). Br J Ophthalmol 92(5):705(7)Google Scholar
  20. Clements LR, Wang PY, Harding F, Tsai WB, Thissen H, Voelcker NH (2011) Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Physica Status Solidi A 208(6):1440–1445CrossRefGoogle Scholar
  21. De Angelis F, Pujia A, Falcone C, Iaccino E, Palmieri C, Liberale C, Mecarini F, Candeloro P, Luberto L, De Laurentiis A (2010) Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context. Nanoscale 2(10):2230–2236CrossRefGoogle Scholar
  22. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247CrossRefGoogle Scholar
  23. Foraker AB, Walczak RJ, Cohen MH, Boiarski TA, Grove C, Swaan P (2003) Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal caco-2 cell monolayers. Pharm Res 20(1):110–116CrossRefGoogle Scholar
  24. Gentile F, La Rocca R, Marinaro G, Nicastri A, Toma A, Paonessa F, Cojoc G, Liberale C, Benfenati F, di Fabrizio E, Decuzzi P (2012) Differential cell adhesion on mesoporous silicon substrates. ACS Appl Mater Interfaces 4(6):2903–2911CrossRefGoogle Scholar
  25. Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, Liu X, Tanaka T, Decuzzi P, Ferrari M (2010) Tailoring the degradation kinetics of mesoporous silicon structures through Pegylation. J Biomed Mater Res A 94A(4):1236–1243Google Scholar
  26. Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu X (2012) Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 22(20):4225–4235CrossRefGoogle Scholar
  27. Guillermain E, Lysenko V, Orobtchouk R, Benyattou T, Roux S, Pillonnet A, Perriat P (2007) Bragg surface wave device based on porous silicon and its application for sensing. Appl Phys Lett 90(24):241116-3CrossRefGoogle Scholar
  28. Jane A, Dronov R, Hodges A, Voelcker NH (2009) Porous silicon biosensors on the advance. Trends Biotechnol 27(4):230–239CrossRefGoogle Scholar
  29. Johansson F, Kanje M, Eriksson C, Wallman L (2005) Guidance of neurons on porous patterned silicon: is pore size important? Phys Status Solidi C 2(9):3258–3262CrossRefGoogle Scholar
  30. Johansson F, Kanje M, Linsmeier CE, Wallman L (2008) The influence of porous silicon on axonal outgrowth in vitro. IEEE Trans Biomed Eng 55(4):1447–1449CrossRefGoogle Scholar
  31. Johansson F, Wallman L, Danielsen N, Schouenborg J, Kanje M (2009) Porous silicon as a potential electrode material in a nerve repair setting: tissue reactions. Acta Biomater 5(6):2230–2237CrossRefGoogle Scholar
  32. Khung Y-L, Graney SD, Voelcker NH (2006) Micropatterning of porous silicon films by direct laser writing. Biotechnol Prog 22(5):1388–1393CrossRefGoogle Scholar
  33. Kilian KA, Böcking T, Ilyas S, Gaus K, Jessup W, Gal M, Gooding JJ (2007) Forming antifouling organic multilayers on porous silicon rugate filters towards in vivo/Ex vivo biophotonic devices. Adv Funct Mater 17(15):2884–2890CrossRefGoogle Scholar
  34. Kilpeläinen M, Riikonen J, Vlasova MA, Huotari A, Lehto VP, Salonen J, Herzig KH, Järvinen K (2009) In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J Control Release 137(2):166–170CrossRefGoogle Scholar
  35. Kovalainen M, Mönkäre J, Mäkilä E, Salonen J, Lehto V-P, Herzig KH, Järvinen K (2012) Mesoporous silicon (Psi) for sustained peptide delivery: effect of Psi microparticle surface chemistry on peptide Yy3-36 release. Pharm Res 29(3):837–846CrossRefGoogle Scholar
  36. Kovalev D, Gross E, Kunzner N, Koch F, Timoshenko VY, Fujii M (2002) Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules. Appl Phys Lett 89(13):1374011–1374014Google Scholar
  37. Kovalev D, Gross E, Diener J, Timoshenko VY, Fujii M (2004) Photodegradation of porous silicon induced by photogenerated singlet oxygen molecules. Appl Phys Lett 85(16):3590–3592CrossRefGoogle Scholar
  38. Letant SE, Hart BR, Van Buuren AW, Terminello LJ (2003) Functionalized silicon membranes for selective Bio-organism capture. Nat Mater 2:391–395CrossRefGoogle Scholar
  39. Letant SE, Hart BR, Kane SR, Hadi MZ, Shields SJ, Reynolds JG (2004) Enzyme immobilization on porous silicon surfaces. Adv Mater (Weinheim, Ger) 16(8):689–693CrossRefGoogle Scholar
  40. Lin VS-Y, Motesharei K, Dancil K-PS, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278(5339):840–843CrossRefGoogle Scholar
  41. Low SP, Williams KA, Canham LT, Voelcker NH (2006) Evaluation of mammalian cell adhesion on surface modified porous silicon. Biomaterials 27:4538–4546CrossRefGoogle Scholar
  42. Low SP, Voelcker NH, Canham LT, Williams KA (2009) The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30(15):2873–2880CrossRefGoogle Scholar
  43. Low SP, Williams KA, Canham LT, Voelcker NH (2010) Generation of reactive oxygen species from porous silicon microparticles in cell culture medium. J Biomed Mater Res A 93A(3):1124–1131Google Scholar
  44. Mayne AH, Bayliss SC, Barr P, Tobin M, Buckberry LD (2000) Biologically interfaced porous silicon devices. Phys Status Solidi A 182:505–513CrossRefGoogle Scholar
  45. Meraz IM, Melendez B, Gu J, Wong STC, Liu X, Andersson HA, Serda RE (2012) Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node. Mol Pharm 9(7):2049–2062CrossRefGoogle Scholar
  46. Moxon KA, Hallman S, Aslani A, Kalkhoran NM, Lelkes PI (2007) Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. J Biomater Sci Polym Ed 18(10):1263–1281CrossRefGoogle Scholar
  47. Noval AM, Vaquero VS, Quijorna EP, Costa VT, Pérez DG, Méndez LG, Montero I, Palma RJM, Font AC, Ruiz JPG, Silván MM (2012) Aging of porous silicon in physiological conditions: cell adhesion modes on scaled 1d micropatterns. J Biomed Mater Res A 100A(6):1615–1622CrossRefGoogle Scholar
  48. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336CrossRefGoogle Scholar
  49. Pavesi L, Dubos P (1997) Random porous silicon multilayers: application to distributed Bragg reflectors and interferential fabry – pérot filters. Semicond Sci Technol 12(5):570CrossRefGoogle Scholar
  50. Porter AE, Buckland T, Hing K, Best SM, Bonfield W (2006) The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants. J Biomed Mater Res A 78A(1):25–33CrossRefGoogle Scholar
  51. Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75CrossRefGoogle Scholar
  52. Reffit DM, Jugdaohsingh R, Thompson RP, Powell JJ (1999) Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem 76:141–147CrossRefGoogle Scholar
  53. Refuerzo JS, Godin B, Bishop K, Srinivasan S, Shah SK, Amra S, Ramin SM, Ferrari M (2011) Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. Am J Obstet Gynecol 204(6):546.e5–546.e9Google Scholar
  54. Rosengren A, Wallman L, Bengtsson M, Laurell T, Danielsen N, Bjursten LM (2000) Tissue reactions to porous silicon: a comparative biomaterial study. Phys Status Solidi A 182:527–531CrossRefGoogle Scholar
  55. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, Vähä-Heikkilä K, Hirvonen J, Lehto VP (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108:362–374CrossRefGoogle Scholar
  56. Santos HA, Riikonen J, Salonen J, Mäkilä E, Heikkilä T, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration surface chemistry and size. Acta Biomater 6(7):2721–2731CrossRefGoogle Scholar
  57. Sarparanta M, Mäkilä E, Heikkilä T, Salonen J, Kukk E, Lehto V-P, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18F-Labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8(5):1799–1806CrossRefGoogle Scholar
  58. Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ (2012) The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33(11):3353–3362CrossRefGoogle Scholar
  59. Schwartz MP, Derfus AM, Alvarez SD, Bhatia SN, Sailor MJ (2006) The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells. Langmuir 22(16):7084–7090CrossRefGoogle Scholar
  60. Starodub VM, Fedorenko LL, Sisetskiy AP, Starodub NF (1999) Control of myoglobin level in a solution by an immune sensor based on the photoluminescence of porous silicon. Sens Actuators B 58:409–414CrossRefGoogle Scholar
  61. Steinem C, Janshoff A, Lin VS-Y, Volcker HE, Ghadiri MR (2004) DNA hybridization-enhanced porous silicon corrosion: mechanistic investigations and prospect for optical interferometric biosensing. Tetrahedron 60:11259–11267CrossRefGoogle Scholar
  62. Sweetman MJ, Harding FJ, Graney SD, Voelcker NH (2011) Effect of oligoethylene glycol moieties in porous silicon surface functionalisation on protein adsorption and cell attachment. Appl Surf Sci 257(15):6768–6774CrossRefGoogle Scholar
  63. Szili EJ, Jane A, Low SP, Sweetman M, Macardle P, Kumar S, Smart RSC, Voelcker NH (2011) Interferometric porous silicon transducers using an enzymatically amplified optical signal. Sens Actuators B 160(1):341–348CrossRefGoogle Scholar
  64. Tanaka T, Tanigawa T, Nose T, Imai S, Hayashi Y (1994) In vitro cytotoxicity of silicic acid in comparison with that of selenious acid. J Trace Elem Exp Med 7(3):101–111Google Scholar
  65. Tanaka T, Godin B, Bhavane R, Nieves-Alicea R, Gu J, Liu X, Chiappini C, Fakhoury JR, Amra S, Ewing A, Li Q, Fidler IJ, Ferrari M (2010a) In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm 402:190–197CrossRefGoogle Scholar
  66. Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, Han H-D, Shahzad MMK, Liu X, Bhavane R, Gu J, Fakhoury JR, Chiappini C, Lu C, Matsuo K, Godin B, Stone RL, Nick AM, Lopez-Berestein G, Sood AK, Ferrari M (2010b) Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 70(9):3687–3696CrossRefGoogle Scholar
  67. Wang F, Hui H, Barnes TJ, Barnett C, Prestidge CA (2009) Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol Pharm 7(1):227–236CrossRefGoogle Scholar
  68. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953CrossRefGoogle Scholar
  69. Yang C-Y, Huang L-Y, Shen T-L, Yeh JA (2010) Cell adhesion, morphology and biochemistry on nano-topographic oxidised silicon surfaces. Eur Cell Mater 20:415–430Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mawson InstituteUniversity of South AustraliaMawson LakesAustralia

Personalised recommendations