Mechanical Properties of Porous Silicon

  • Leigh Canham
Living reference work entry

Latest version View entry history


Introducing nanoscale porosity into silicon dramatically lowers its stiffness and hardness in a tunable manner over a wide range. In this updated review, available data is collated on Young’s modulus and Vickers hardness as a function of porosity, layer morphology, and surface chemistry. There is little quantitative data on fracture toughness and strength, but theoretical work predicts that optimized nanocomposites could be very mechanically durable. The exceptional plasticity recorded for individual silicon nanowires is yet to be demonstrated in mesoporous silicon. A number of application areas are highlighted that rely heavily on the mechanical properties of porous silicon.


Porous silicon Mechanical properties Youngs modulus Hardness Fracture toughness Yield strength 


  1. Alan T et al (2006) Methyl monolayers improve the fracture strength and durability of silicon nanobeams. Appl Phys Lett 89:231905. CrossRefGoogle Scholar
  2. Aliev GN, Goller P, Snow P (2011) Elastic properties of porous silicon studied by acoustic transmission spectroscopy. J Appl Phys 110:043534. CrossRefGoogle Scholar
  3. Barla K et al (1984) Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction. J Cryst Growth 68:727CrossRefGoogle Scholar
  4. Bellet D et al (1996) Nanoindentation investigation of the Young’s modulus of porous silicon. J Appl Phys 80:3772CrossRefGoogle Scholar
  5. Canham LT et al (1994) Luminescent anodized silicon aerocrystal networks prepared by supercritical drying. Nature 368:133–135CrossRefGoogle Scholar
  6. Charitidis CA et al (2011) Nanomechanical properties of thick porous silicon layers grown on p − and p + type bulk crystalline silicon. Mater Sci Eng A528:8715–8722CrossRefGoogle Scholar
  7. Chen CP, Leipold MH (1980) Fracture toughness of silicon. Am Ceram Soc Bull 59:469–472Google Scholar
  8. Da Fonesca RJM et al (1995) Acoustic investigation of porous silicon layers. J Mater Sci 30:35CrossRefGoogle Scholar
  9. DelRio FW, White RM, Krylyuk S, Davydov AV, Friedman LH, Cook RF (2016) Near theoretical fracture strengths in native and oxidized silicon nanowires. Nanotechnology 27:31LT02., (7pp)CrossRefGoogle Scholar
  10. Doghmane A et al (2006) Microacoustic evaluation of elastic parameters of highly porous silicon layers. Semicond Phys Quant Electron Optoticelectron 9(3):4–11Google Scholar
  11. Drory MD, Searson PC, Liu L (1990) The mechanical properties of porous silicon membranes. J Mater Sci Lett 10:81–82CrossRefGoogle Scholar
  12. Duttagupta SP et al (1997) Microhardness of porous silicon films and composites. Solid State Commun 101(1):33–37CrossRefGoogle Scholar
  13. Fang Z, Hu M, Zhang W, Zhang X, Yang H (2008) Thermal conductivity and nanoindentation hardness of as-prepared and oxidized porous silicon layers. J Mater Sci Mater Electron 19:1128–1134CrossRefGoogle Scholar
  14. Fang Z et al (2009) Mechanical properties of porous silicon by depth-sensing nanoindentation techniques. Thin Solid Films 517(9):2930–2935CrossRefGoogle Scholar
  15. Garcia AP et al (2010) Bioinspired nanoporous silicon provides great toughness at great deformability. Comput Mater Sci 48:303–309CrossRefGoogle Scholar
  16. Gerberich WW et al (2003) Superhard silicon nanospheres. J Mech Phys Solids 51(6):979–992CrossRefGoogle Scholar
  17. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  18. Gor GY, Bertinetti L, Bernstein N, Hofmann T, Fratzel P, Huber P (2015) Elastic response of mesoporous silicon to capillary pressures in the pores. Appl Phys Lett 106:261901CrossRefGoogle Scholar
  19. Han X, Zheng K, Zhang YF, Zhang X, Zhang Z, Wang ZL (2007) Low temperature in situ large-strain plasticity of silicon nanowires. Adv Mater 19(16):2112–2118. CrossRefGoogle Scholar
  20. Ishida T et al (2011) Exceptional plasticity of silicon nanobridges. Nanotechnology 22(35):355704CrossRefGoogle Scholar
  21. Jaya BN et al (2015) Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. J Mater Res 30(5):686–698CrossRefGoogle Scholar
  22. Jiang Y et al (2016) Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat Mater 15(9):1023-1-30CrossRefGoogle Scholar
  23. Klyshko A et al (2008) Mechanical strength of porous silicon and its possible applications. Superlattice Microst 44:374–377CrossRefGoogle Scholar
  24. Magoariec H, Danescu A (2009) Modelling macroscopic elasticity of porous silicon. Phys Status Solidi 6(7):1680–1684CrossRefGoogle Scholar
  25. Martini R et al (2012) Mechanical properties of sintered mesoporous silicon: a numerical model. Nanoscale Res Lett 7:597CrossRefGoogle Scholar
  26. Miller DC, Boyce BL, Kotula PG, Stoldt CR (2008) Connections between morphological and mechanical evolution during galvanic corrosion of micromachined polycrystalline and monocrystalline silicon. J Appl Phys 103:123518CrossRefGoogle Scholar
  27. Ni H et al (2005) Nanoscale structural and mechanical characterization of bamboo-like polymer/silicon nanocomposite films. Nanotechnology 16:1746–1753CrossRefGoogle Scholar
  28. Oisten MK et al (2009) A Young’s modulus study of n- and p-type porous silicon. Phys Stat Solid A 206(6):1278–1281CrossRefGoogle Scholar
  29. Peterson KE (1982) Silicon as a mechanical material. Proc IEEE 70(5):420CrossRefGoogle Scholar
  30. Phalippou J et al (1989) Fracture toughness of silica aerogels. Rev Phys Appl C4(24):191–196Google Scholar
  31. Populaire CH et al (2003) On mechanical properties of nanostructured mesoporous silicon. Appl Phys Lett 83:1370CrossRefGoogle Scholar
  32. Rahmoun K et al (2009) A multilayer model for describing hardness variations of aged porous silicon low-dielectric constant thin films. Thin Solid Films 518:213–221CrossRefGoogle Scholar
  33. Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interface 3:613–626CrossRefGoogle Scholar
  34. Rice RW (ed) (1998) Porosity of ceramics. Marcel Dekker, New YorkGoogle Scholar
  35. Rolley E, Garroum N, Grosman A (2017) Using capillary forces to determine the elastic properties of mesoporous materials. Phys Rev B95:064106CrossRefGoogle Scholar
  36. Salonen J, Kaasalainen M, Rauhala OP, Lassila L, Hakamies M, Jalkanen T, Hahn R, Schmuki P, Makila E (2015) Thermal carbonization of porous silicon: the current status and recent applications. ECS Trans 69(2):167–176CrossRefGoogle Scholar
  37. Sohn YS et al (2010) Mechanical properties of silicon nanowires. Nanoscale Res Lett 5:211–216CrossRefGoogle Scholar
  38. Tanaka M et al (2006) Orientation dependence of fracture toughness measurements by indentation methods and its relation to surface energy in single crystal silicon. Int J Fract 139:383–394CrossRefGoogle Scholar
  39. Wang F et al (2011) Conciliating surface super hydrophobicities and mechanical strength of porous silicon films. Appl Surf Sci 257:2752–2755CrossRefGoogle Scholar
  40. Winter N et al (2017) Effects of pore design on mechanical properties of nanoporous silicon. Acta Mater 124:127–136CrossRefGoogle Scholar
  41. Xiao et al (2015) Inward lithium ion breathing in hierarchically porous silicon anodes. Nat Commun 6:8844CrossRefGoogle Scholar
  42. Zhang et al. (2016) Approaching the ideal elastic strain limit in silicon nanowires. Sci Adv 2(8):e1501382CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of BirminghamBirminghamUK

Personalised recommendations