Skip to main content

SERS Analysis with Porous Silicon

Abstract

Porous silicon covered with metallic nanostructures has demonstrated significant potential over the last 15 years for surface-enhanced Raman spectroscopy (SERS), and the field is comprehensively reviewed. A range of porous silicon morphologies created via anodization, reactive ion etching, hydrothermal etching, and metal-assisted chemical etching (MACE) have been investigated. Porous silicon has been used as a tool to manage shape, dimensions, and spatial location of metallic nanostructures to meet the requirements for extremely sensitive and cost-effective SERS substrates. Detection limits for organic analytes as low as 10−16 M and enhancement factors up to 1010 have been reported with commercial products now starting to appear. Key attributes and challenges with porous silicon technology are discussed.

Keywords

  • Surface Enhance Raman Spectroscopy
  • Porous Silicon
  • Surface Enhance Raman Spectroscopy
  • Analyte Molecule
  • Metallic Nanostructures

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Artsemyeva K, Bandarenka H, Panarin A et al (2012) SERS-active substrates fabricated by displacement deposition of metals on porous silicon. Paper presented at the 222nd ECS Fall Meeting, Honolulu, 7–12 Oct 2012

    Google Scholar 

  • Artsemyeva K, Dolgiy A, Bandarenka H et al (2013) Fabrication of SERS-active substrates by electrochemical and electroless deposition of metals in macroporous silicon. ECS Trans 53(11):85–95

    CrossRef  Google Scholar 

  • Bandarenka H, Redko S, Smirnov A et al (2012) Nanostructures formed by displacement of porous silicon with copper: from nanoparticles to porous membranes. Nanoscale Res Lett 7:477

    CrossRef  Google Scholar 

  • Bandarenka H, Artsemyeva K, Redko S et al (2013) Effect of swirl-like resistivity striations in n+-type Sb doped Si wafers on the properties of Ag/porous silicon SERS substrates. Phys Status Solidi C 10(4):549–553

    CrossRef  Google Scholar 

  • Bandarenka HV, Girel KV, Bondarenko VP et al (2016) Formation regularities of plasmonic silver nanostructures on porous silicon for effective surface enhanced Raman scattering. Nanoscale Res Lett 11:262

    CrossRef  Google Scholar 

  • Castillo JJ, Rindzevicius T, Wu K et al (2014) Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates. J Nanopart Res 16:2525

    CrossRef  Google Scholar 

  • Castillo JJ, Rindzevicius T, Wu K et al (2015) Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface-enhanced Raman spectroscopy and density functional theory. J Raman Spectrosc 46(11):1087–1094

    CrossRef  Google Scholar 

  • Chan S, Kwon S, Koo T-W et al (2003) Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores. Adv Mater 15(19):1595–1598

    CrossRef  Google Scholar 

  • Chan S, Berlin AA, Yamakawa M (2005) Metal coated nanocrystalline silicon as an active surface enhanced Raman spectroscopy (SERS) substrate. Patent No.: US 6,970,239 B2

    Google Scholar 

  • Chattopadhyay S, Lo H-C, Hsu C-H et al (2005) Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips. Chem Mater 17:553–559

    CrossRef  Google Scholar 

  • Chiolerio A, Virga A, Pandolfi P et al (2010) Direct patterning of silver particles on porous silicon by inkjet printing of a silver salt via in-situ reduction. Nanoscale Res Lett 7:502

    CrossRef  Google Scholar 

  • Chursanova MV, Germash LP, Yukhymchuk VO et al (2010) Optimization of porous silicon preparation technology for SERS applications. Appl Surf Sci 256:3369–3373

    CrossRef  Google Scholar 

  • Cole RM, Mahajan S, Bartlett PN et al (2009) Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids. Opt Express 17:13298–13308

    CrossRef  Google Scholar 

  • Dridi H, Moadhen A, Haji L (2014) Comparative SERS study carried out on unsilanized and silanized oxidized porous silicon surface coated by small gold nanoparticles. J Porous Mater 22(1):239–245

    CrossRef  Google Scholar 

  • Feng F, Zhi G, Jia HS et al (2009) SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 20:295501–295506

    CrossRef  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    CrossRef  Google Scholar 

  • Fukami K, Chourou ML, Miyagawa R et al (2011) Gold nanostructures for surface-enhanced Raman spectroscopy, prepared by electrodeposition in porous silicon. Materials 4:791–800

    CrossRef  Google Scholar 

  • Galopin E, Patriarche G, Barbillat J et al (2009) Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 1(7):1396–1403

    CrossRef  Google Scholar 

  • Giorgis F, Descrovi E, Chiodoni A et al (2008) Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate. Appl Surf Sci 254:7494–7497

    CrossRef  Google Scholar 

  • Giorgis F, Virga A, Descrovi E et al (2009) SERS-active substrates based on silvered porous silicon. Phys Status Solidi C 6(7):1736–1739

    CrossRef  Google Scholar 

  • Girel K, Dolgyi L, Bandarenka H (2015a) Deposition of silver dendrites on porous silicon for fabrication of SERS-active substrates. Paper presented at the international conference Nanomeeting, Minsk, 26–29 May 2015

    Google Scholar 

  • Girel K, Bandarenka H, Kovalchuk N et al (2015b) Improvement of surface enhanced Raman spectroscopy by analyte molecules covering with graphene. Paper presented at the Paper presented at the 228th ECS Fall Meeting, Phoenix, 11–15 Oct 2015

    Google Scholar 

  • Girel K, Kovalchuk N, Komissarov I et al (2015c) High stable SERS-active surfaces engineering by plasmonic metals deposition on porous silicon and graphene protection. Paper presented at the 17th international conference-school AMT Palanga, 27–31 Aug 2015

    Google Scholar 

  • Girel K, Yantcevich E, Bandarenka H (2016) Detection of DNA molecules by SERS-spectroscopy with silvered porous silicon as an active substrate. Phys Stat Solidi A 2013(11):2911–2915

    Google Scholar 

  • Gladkova OL, Panarin AY, Khodasevich IA et al (2012) Surface enhanced Raman spectra of a complex of antimony with phenylfluorone and their interpretation. Opt Spectrosc 112(4):489–496

    CrossRef  Google Scholar 

  • Hakonen A, Rindzevicius T, Schmidt MS et al (2016) Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Nanoscale 8:1305–1308

    CrossRef  Google Scholar 

  • Harraz FA, Ismail AA, Bouzida H et al (2015) Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Appl Surf Sci 331:241–247

    CrossRef  Google Scholar 

  • http://www.silmeco.com/. Accessed 31 Jan 2016

  • Ignat T, Munoz R, Kleps I et al (2009) SERS-active substrate based on macroporous silicon. Rom J Inf Sci Technol 12(4):496–503

    Google Scholar 

  • Jiang WF, Shan WW, Ling H et al (2010) Surface-enhanced Raman scattering of patterned copper nanostructure electrolessly plated on arrayed nanoporous silicon pillars. J Phys Condens Matter 22:415105

    CrossRef  Google Scholar 

  • Jiao Y, Koktysh DS, Phambu N et al (2010) Dual-mode sensing platform based on colloidal gold functionalized porous silicon. Appl Phys Lett 97:153125

    CrossRef  Google Scholar 

  • Jiao Y, Koktysh DS, Weiss SM et al (2011) Dual detection platform with refractive index and SERS sensing based on colloidal gold. Mater Res Soc Symp Proc 1:247–252

    Google Scholar 

  • Khajehpour KJ, Williams T, Bourgeois L et al (2012) Gold nanothorns–macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS. Chem Commun 48:5349–5351

    CrossRef  Google Scholar 

  • Kiraly B, Yang S, Huang TJ (2013) Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering. Nanotechnology 24:245704

    CrossRef  Google Scholar 

  • Kneipp K, Wang Y, Dasari RR et al (1995) Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): a study using Rhodamine 6G on colloidal silver. Appl Spectrosc 49(6):780–784

    CrossRef  Google Scholar 

  • Korotcenkov G, Han S (2015) Porous silicon in Raman spectroscopy. In: Korotcenkov G (ed) Porous silicon: from formation to application. Taylor and Francis Group, Boca Raton, pp 266–270

    Google Scholar 

  • Kosovic M, Balarin M, Ivanda M et al (2015) Porous silicon covered with silver nanoparticles as surface-enhanced Raman scattering (SERS) substrate for ultra-low concentration detection. Appl Spectrosc 69(12):1417–1424

    CrossRef  Google Scholar 

  • Lai Y, Wang J, He T et al (2014) Improved surface enhanced Raman scattering for nanostructured silver on porous silicon for ultrasensitive determination of 2,4,6-trinitrotoluene. Anal Lett 47:833–842

    CrossRef  Google Scholar 

  • Lauridsen RK, Rindzevicius T, Molin S et al (2015) Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis. Sens Bio-Sensing Res 5:84–89

    CrossRef  Google Scholar 

  • Le Ru EC, Blackie E, Meyer M et al (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803

    CrossRef  Google Scholar 

  • Lin H, Mock J, Smith D et al (2004) Surface-enhanced Raman scattering from silver-plated porous silicon. J Phys Chem B 108:11654–11659

    CrossRef  Google Scholar 

  • Liu GL, Choi Y-K, Kwon S et al (2003) Nanopillar substrate for SERS. Paper presented at the 7th international conference on miniaturized chemical and biochemical analysis systems, Squaw Valley, 5–9 Oct 2003

    Google Scholar 

  • Lü C, Wang J, Lü X et al (2014) Silver particles deposited on porous silicon as SERS-active substrate. Chin Opt Lett 12:S12401

    CrossRef  Google Scholar 

  • Mandelstam LI, Landsberg GS (1928) New phenomenon in scattering of light. Zh Ross Fiz Khim Obshch 60:335

    Google Scholar 

  • Mikac L, Ivanda M, Gotic M et al (2015) Metal nanoparticles deposited on porous silicon templates as novel substrates for SERS. Croat Chem Acta 88(4):437–444

    CrossRef  Google Scholar 

  • Mikac L, Ivanda M, Derek V et al (2016) Influence of mesoporous silicon preparation condition on silver clustering and SERS enhancement. J Raman Spectrosc. doi:10.1002/jrs.4911. Published online

    Google Scholar 

  • Natan MJ (2006) Concluding Remarks Surface enhanced Raman scattering. Faraday Discuss 132:321–328

    CrossRef  Google Scholar 

  • Niauzorau S, Girel K, Sherstnyov A et al (2016) Fabrication of nanocomposites based on silicon nanowires and study of their optical properties. Phys Stat Solidi C 13(4):146–150

    CrossRef  Google Scholar 

  • Novara C, Petracca F, Virga A et al (2014) SERS active silver nanoparticles synthesized by inkjet printing on mesoporous silicon. Nanoscale Res Lett 9:527

    CrossRef  Google Scholar 

  • Novara C, Lamberti A, Chiado A et al (2016) Surface-enhanced Raman spectroscopy on porous silicon membranes decorated with Ag nanoparticles integrated in elastomeric microfluidic chips. RSC Adv 6:21865–21870

    CrossRef  Google Scholar 

  • Panarin AY, Terekhov SN, Khodasevich IA et al (2007) Silver-coated nanoporous silicon as SERS-active substrate for investigation of tetrapyrrolic molecules. Proc SPIE 6728:672828

    CrossRef  Google Scholar 

  • Panarin AY, Turpin PY, Chirvony VS et al (2009) Formation of SERS-active silver structures on the surface of mesoporous silicon. J Appl Spectrosc 76(2):280–287

    CrossRef  Google Scholar 

  • Panarin AYu, Khodasevich IA, Terekhov SN et al (2013a) Formation regularities of SERS-active substrates based on silvered mesoporous silicon. Paper presented at the international conference Nanomeeting, Minsk, 28–31 May 2013

    Google Scholar 

  • Panarin AYu, Khodasevich IA, Terekhov SN et al (2013b) Novel bimetallic plasmonic nanovoids for SERS. Paper presented at the international conference Nanomeeting, Minsk, 28–31 May 2013

    Google Scholar 

  • Panarin AY, Khodasevich IA, Gladkova OL et al (2014) Determination of antimony by surface-enhanced Raman spectroscopy. Appl Spectrosc 68(3):297–306

    CrossRef  Google Scholar 

  • Panarin AYu, Girel KV, Bandarenka HV et al (2015) Formation of silver nanostructures on porous silicon and review of their application. Paper presented at the 2nd international conference on modern applications of nanotechnology, Minsk, 6–8 May 2015

    Google Scholar 

  • Pio MS, Kwon S, Choi Y-K, Lee LP (2002) Batch fabrication of nanopillars for autonomous nanofluidic SERS arrays. Mater Res Soc Symp Proc 729:179–184

    Google Scholar 

  • Raman CV (1928) A new radiation. Indian J Phys 2:387–398

    Google Scholar 

  • Schmidt MS, Hübner J, Boisen A (2012) Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv Mater 24:OP11–OP18

    Google Scholar 

  • Sharma B, Frontiera RR, Henry AI et al (2012) SERS: materials, applications, and the future. Mater Today 15(1–2):16–25

    CrossRef  Google Scholar 

  • Shome K, Kavalenka M, Fang DZ et al (2010) Metallized ultrathin porous silicon membranes for biological sensing using SERS. Proc SPIE 7553:75530F1–75530F7

    CrossRef  Google Scholar 

  • Terekhov SN, Panarin AYu, Kholostov KI et al (2009a) Nanostructured silver films on meso- and macroporous silicon layers as a substrate for surface-enhanced Raman scattering. Paper presented at the international conference Nanomeeting, Minsk, 26–29 May 2009

    Google Scholar 

  • Terekhov SN, Gladkov LL, Gladkova OL et al (2009b) Raman spectra of tetrapyrrole photosensitizer chlorin e 6 and their interpretation. Opt Spectrosc 106(6):813–820

    Google Scholar 

  • Terekhov SN, Mojzes P, Kachan SM et al (2011) A comparative study of surface-enhanced Raman scattering from silver-coated anodic aluminum oxide and porous silicon. J Raman Spectrosc 42:12–20

    CrossRef  Google Scholar 

  • Virga A, Rivolo P, Descrovi E et al (2011) SERS active Ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide–antibody assays. J Raman Spectrosc 43:730–736

    CrossRef  Google Scholar 

  • Virga A, Rivolo P, Frascella F et al (2013) Silver nanoparticles on porous silicon: approaching single molecule detection in resonant SERS regime. J Phys Chem C 117(39):20139–20145

    CrossRef  Google Scholar 

  • Wang YQ, Ma S, Yang QQ et al (2012) Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array. Appl Surf Sci 258:5881–5885

    CrossRef  Google Scholar 

  • Wiesinger R, Martina I, Kleber C et al (2013) Influence of relative humidity and ozone on atmospheric silver corrosion. Corros Sci 77:69–76

    CrossRef  Google Scholar 

  • Wong CL, Dinish US, Schmidt MS et al (2014) Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs). Analyt Chim Acta 844:54–60

    CrossRef  Google Scholar 

  • Wu K, Rindzevicius T, Schmidt MS et al (2015a) Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography. Opt Express 23(10):12965–12978

    CrossRef  Google Scholar 

  • Wu K, Rindzevicius T, Schmidt MS et al (2015b) Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations. J Phys Chem C 119:2053–2062

    CrossRef  Google Scholar 

  • Yang J, Palla M, Bosco FG et al (2013) Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano 7(6):5350–5359

    CrossRef  Google Scholar 

  • Ye W, Shen C, Tian J et al (2008) Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem Commun 10:625–629

    CrossRef  Google Scholar 

  • Zeiri L, Rechav K, Porat Z et al (2012) Silver nanoparticles deposited on porous silicon as a surface-enhanced Raman scattering (SERS) active substrate. Appl Spectrosc 66(3):294–299

    CrossRef  Google Scholar 

  • Zhang B, Wang H, Lu L et al (2008) Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv Funct Mater 18:2348–2355

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna V. Bandarenka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Bandarenka, H.V. (2016). SERS Analysis with Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_107-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_107-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science