Advertisement

Routes of Formation for Porous Silicon

  • Leigh Canham
Living reference work entry

Latest version View entry history

Abstract

This updated review summarizes, from a chronological perspective, how about 40 distinguishable fabrication routes have been developed to create different types of porous silicon. Porous silicon has been fabricated by both “top-down” techniques from solid silicon and “bottom-up” routes from silicon atoms and silicon-based molecules. Over the last 50 years, electrochemical etching has been the most developed approach for chip-based applications and has been utilized to create highly directional mesoporosity (pore diameters in the range 2–50 nm) and macroporosity (pore diameters >50 nm). Recently, chemical conversion of porous or solid silica using magnesium vapor has received much attention for applications that require inexpensive mesoporous silicon in powder form. Very few techniques are currently available for creating wholly microporous silicon with pore size below 2 nm.

Keywords

Porous silicon Fabrication Formation routes Nanoporous Macroporous Mesoporous Microporous 

References

  1. Abburi M, Bostrom T, Olefjord I (2010) Electrochemical texturing of multicrystalline silicon wafers in alkaline solutions. In: Proceedings of the 24th European photovoltaic solar energy conference, Hamburg, pp 1779–1783Google Scholar
  2. Abdi Y, Derakhshandeh J, Hashemi P, Mohajerzadeh S, Karbassian F, Nayeri F, Arzi E, Robertson MD, Radamson H (2005) Light emitting nano-porous silicon structures fabricated using a plasma hydrogenation technique. Mater Sci Eng B124-125:483–487CrossRefGoogle Scholar
  3. Archer RJ (1960) Stain films on silicon. J Phys Chem Solids 14:104–110CrossRefGoogle Scholar
  4. Ashruf CMA, French PJ, Bressers PMMC, Kelly JJ et al (1999) Galvanic porous silicon formation without external contacts. Sens Actuat A 74:118–122CrossRefGoogle Scholar
  5. Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW III, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nat Lett 446:172CrossRefGoogle Scholar
  6. Beydaghyan G, Kaminska K, Brown T, Robbie K (2004) Enhanced birefringence in vacuum evaporated silicon thin films. Appl Opt 43(28):5343–5349CrossRefGoogle Scholar
  7. Canham LT, Groszek AJ (1992) Characterization of microporous silicon by flow calorimetry - comparison with a hydrophobic silica molecular sieve. J Appl Phys 72:1558CrossRefGoogle Scholar
  8. Chen Q, Zhou G, Zhu J, Fan C, Li X-G, Zhang Y (1996) Ultraviolet light emission from porous silicon hydrothermally prepared. Phys Lett A 224:133–136CrossRefGoogle Scholar
  9. Dai F, Zai J, Yi R, Gordin ML, Sohn H, Wang D (2014) Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat Commun 5:3605Google Scholar
  10. Deng T, Chen J, Wu CN, Liu ZW (2013) Fabrication of inverted pyramid silicon nanopore arrays with three step wet etching. ECS J Solid State Sci Technol 2(11):419–422CrossRefGoogle Scholar
  11. Dimova-Malinovska D, Sendova-Vassileva M, Tzenov N, Kamenova M (1997) Preparation of thin porous silicon layers by stain etching. Thin Solid Films 297:285–290CrossRefGoogle Scholar
  12. Fang DZ, Striemer CC, Gaborski TR, JL MG, Fauchet PM (2010) Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes. J Phys Cond Mater 22:454134CrossRefGoogle Scholar
  13. Fukatani K, Ishida Y, Aiba T, Miyata H, Den T (2005) Characterization of nanoporous Si thin films obtained by al-Si phase separation. Appl Phys Lett 87:253112CrossRefGoogle Scholar
  14. Godhino V, Caballero-Hernandez J, Jamon D, Rojas TC, Schierholz R, Garcia-Lopez J, Ferrer FJ, Fernandez A (2013) A new bottom-up methodology to produce silicon layers with a closed porosity nanostructure and reduced refractive index. Nanotechnology 24:275604CrossRefGoogle Scholar
  15. Huang X, Gonzalo-Rodriguez R, Rich R, Gryczynski Z, Coffer JL (2013) Fabrication and size dependent properties of porous silicon nanotube arrays. Chem Commun 49(51):5760–5762CrossRefGoogle Scholar
  16. Hummel RE, Chang S-S (1992) Novel technique for preparing porous silicon. Appl Phys Lett 61(16):1965–1967CrossRefGoogle Scholar
  17. Jakubowicz J, Smardz K, Smardz L (2007) Characterisation of porous silicon prepared by powder technology. Physica E38:139–143CrossRefGoogle Scholar
  18. Kabashin AV, Meunier M (2002) Fabrication of photoluminescent Si-based layers by air optical breakdown near the silicon surface. Appl Surf Sci 186:578–582CrossRefGoogle Scholar
  19. Kalkan AK, Bae S, Li H, Hayes DJ, Fosash SJ (2000) Nanocrystalline Si thin films with arrayed void-column network deposited by high density plasma. J Appl Phys 88(1):555–561CrossRefGoogle Scholar
  20. Kaniukov EY, Ustarroz J, Yakimchuk DV, Petrova M, Terryn H, Sivakov V, Petrov AV (2016) Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology 27(11):115305CrossRefGoogle Scholar
  21. Kim H, Han B, Choo J, Cho J (2008) Three-dimensional porous silicon particles for use in high performance lithium secondary batteries. Angew Chem Int Ed 47:10151–10154CrossRefGoogle Scholar
  22. Kolasinski KW, Gimbar NJ, Yu H, Aindow M, Makila E, Salonen J (2017) Regenerative electroless etching of silicon. Angew Chem Int Ed 56:624–627CrossRefGoogle Scholar
  23. Korotcenkov G, Cho BK (2010) Silicon porosification : state of the art. Crit Rev Solid State Mater Sci 35(3):153–260CrossRefGoogle Scholar
  24. Krishnamurthy A, Rasmussen DH, Suni II (2011) Galvanic deposition of nanoporous Si onto 6061 A1 alloy from aqueous HF. J Electrochem Soc 158(2):D68–D71CrossRefGoogle Scholar
  25. Li X, Xiao Y, Yan C, Song JW, Talvev V, Schweizer SL, Pielkieska K, Sprafke A, Lee JH, Wehrspoon RB (2013) Fast electroless fabrication of uniform mesoporous silicon layers. Electrochim Acta 94:57–61CrossRefGoogle Scholar
  26. Liang J, Li X, Hou Z, Qian Y (2015) Nanoporous silicon prepared through air oxidation demagnesiation of Mg2Si and its lithium ion batteries property. Chem Commun 51(33):7230CrossRefGoogle Scholar
  27. Liebes-Peer Y, Bandalo V, Sokmen U, Tornow M, Ashkenasy N (2016) Fabrication of nanopores in multilayered silicon-based membranes using focused electron beam induced etching with XeF2 gas. Microchim Acta 183:987–994CrossRefGoogle Scholar
  28. Mahmood AS, Sivakumar M, Venkatakrishnan K, Tan B (2009) Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation. Appl Phys Lett 95:034107CrossRefGoogle Scholar
  29. Nakahata T, Nakajima H (2004) Fabrication of lotus-type porous silicon by unidirectional solidification in hydrogen. Mater Sci Eng A 384:373CrossRefGoogle Scholar
  30. Noguchi N, Suemune I (1993) Luminescent porous silicon synthesized by visible light irradiation. Appl Phys Lett 62:1429–1431CrossRefGoogle Scholar
  31. Rouquerol J et al (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66(8):1739–1758CrossRefGoogle Scholar
  32. Sadadoun M, Mliki N, Kaabi H, Daoudi K, Bessais B, Ezzaouia H, Bennaceur R (2002) Vapour-etching-based porous silicon: a new approach. Thin Solid Films 405:29–34CrossRefGoogle Scholar
  33. Savin DP et al (1996) Properties of laser ablated porous silicon. Appl Phys Lett 69(20):3048–3050CrossRefGoogle Scholar
  34. Skorb EV, Andreeva DB, Mohwald H (2012) Generation of a porous luminescent structure through ultrasonically induced pathways of silicon modification. Angew Chem Int Ed Engl 51(21):5138–5142CrossRefGoogle Scholar
  35. Smith RL, Collins SD (1992) Porous silicon formation mechanisms. Appl Phys Rev 71:R1–R22CrossRefGoogle Scholar
  36. Smith BD, Patil JJ, Ferralis N, Grossman JC (2016) Catalyst self-assembly for scalable patterning of sub 10nm ultrahigh aspect ratio nanopores in silicon. ACS Appl Mater Interfaces 8(12):8043–9049CrossRefGoogle Scholar
  37. Stepanov AL, Trifonov AA, Osin YN, Valeev VF, Nuzhdin VI (2013) Fabrication of nanoporous silicon by ag + ion implantation. Nanosci Nanoeng 1(3):134–138Google Scholar
  38. Theunissen MJJ (1972) Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid. J Electrochem Soc 119:351–360CrossRefGoogle Scholar
  39. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87(9–10):1051–1069Google Scholar
  40. Tian L, Ram KB, Ahmad I, Menon L, Holtz M (2005) Optical properties of a nanoporous array in silicon. J Appl Phys 97:026101CrossRefGoogle Scholar
  41. Uhlir A (1956) Electrolytic shaping of germanium and silicon. Bell Syst Tech J 35:333–347CrossRefGoogle Scholar
  42. Voigt F, Bruggemann R, Unold T, Huisken F, Bauer GH (2005) Porous thin films grown from size-selected silicon nanocrystals. Mater Sci Eng 25(5–8):584–589CrossRefGoogle Scholar
  43. Wada T, Ichitsubo T, Yubuta K, Segawa H, Yoshida H, Kato H (2014) Bulk nanoporous silicon negative electrode with extremely high cyclability for lithium ion batteries prepared using a top-down process. Nano Lett 14:4505–4510CrossRefGoogle Scholar
  44. Wang JF, Wang KX, Du FH, Guo XX, Jiang YM, Chen JS (2013) Amorphous silicon with high specific surface area prepared by a sodiothermic reduction method for supercapacitors. Chem Commun 49:5007–5009CrossRefGoogle Scholar
  45. Woldering LA, Tjerkstra RW, Jansen HV, Setija ID, Vos WL (2008) Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography. Nanotechnology 19:145304CrossRefGoogle Scholar
  46. Yang X, Zhang P, Shi C, Wen Z (2012) Porous graphite/silicon micro-sphere prepared by in-situ carbothermal reduction and spray drying for lithium ion batteries. ECS Solid Lett 1(2):M5–M7CrossRefGoogle Scholar
  47. Zhang Z, Wang Y, Ren W, Tan Q, Chen Y, Li H, Zhong Z, Su F (2014) Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high performance anodes of lithium ion batteries. Angew Chem Int Ed Eng 53(20):5165–5169Google Scholar
  48. Zheng Y, Yang J, Wang J, NuLi Y (2007) Nano-porous Si/C composites for anode material of lithium ion batteries. Electrochim Acta 52:5863–5867CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of BirminghamBirminghamUK

Personalised recommendations