Advertisement

Chemical Mapping of Ancient Artifacts and Fossils with X-Ray Spectroscopy

  • Uwe BergmannEmail author
  • Loïc Bertrand
  • Nicholas P. Edwards
  • Phillip L. Manning
  • Roy A. Wogelius
Living reference work entry

Abstract

The use of synchrotron radiation for the study of ancient objects has seen a significant increase over the last decade. Many of the major synchrotrons now have expertise and instrumentation that are specialized for the study of ancient objects. After giving an overview of these capabilities in the introduction, we focus in this chapter on synchrotron-rapid-scanning X-ray fluorescence (SRS-XRF) imaging of large objects to uncover ancient writings and chemical preservation in fossils. We will also describe the applications of X-ray absorption spectroscopy and new developments in X-ray Raman scattering, which are used to complement SRS-XRF mapping.

Keywords

Ancient materials Ancient writings Cultural heritage Paleontology Fossils Archimedes Palimpsest Archaeopteryx Synchrotron radiation X-ray fluorescence imaging X-ray absorption spectroscopy X-ray Raman scattering 

Notes

Acknowledgment

This work is based on the joint efforts of several research teams, and we want to thank all of our collaborators. We would like to thank the owners of the artifacts for supporting this research. The studies were carried out at the Stanford Synchrotron Radiation Lightsource, the Synchrotron SOLEIL, and the Diamond Light Source. We are very grateful to the kind support of our science colleagues as well as the support from the engineering, technical, and administrative staff at these facilities. Funding for NPE was made available by the UK EPSRC funding council under the Innovate Programme and by the SSRL Structural Molecular Biology Program, supported by the DOE Office of Biological and Environmental Research and the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). PLM thanks the Science and Technology Facilities Council for the continued support (ST/M001814/1). Additional Funding was provided by a UK Natural Environment Research Council grant NE/J023426/1. LB acknowledges support from Région Île-de-France/DIM Matériaux anciens et patrimoniaux and from the European Commission programs IPERION CH and E-RIHS PP (GA. 654028 and 739503). Funding for the SSRL 6-2 instrument was provided by the Bruce Leak and Sandra Fairon Stanford PULSE Institute Fund. The use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-76SF00515.

Glossary

DPC

Differential phase contrast imaging

eV

Electron volt

EXAFS

Extended X-ray absorption fine structure

FT-IR

Fourier-transform infrared spectroscopy

HERFD

High-energy resolution fluorescence detection

HLCP

High performance liquid chromatography

keV

Kiloelectron volt

LUMO

Lowest unoccupied molecular orbital

nCT

X-ray nano computed tomography

NEXAFS

Near-edge X-ray absorption fine structure spectroscopy

PCCT

X-ray phase-contrast computed tomography

q

Momentum transfer

SAXS

Small angle X-ray scattering

STXM

Scanning transmission X-ray microscopy

ToF-SIMS

Time-of-flight secondary ion mass spectrometry

WAXS

Wide-angle X-ray scattering

XANES

X-ray absorption near-edge structure

XAS

X-ray absorption spectroscopy

XEOL

X-ray-excited optical luminescence

XRD

X-ray diffraction

XRF

X-ray fluorescence

XRS

X-ray raman scattering

μCT

X-ray micro computed tomography

μXRF

Micro X-ray fluorescence

References

  1. A. Acksel et al., Humus-rich topsoils in SW Norway – molecular and isotopic signatures of soil organic matter as indicators for anthropo-pedogenesis. Catena 172, 831–845 (2019)CrossRefGoogle Scholar
  2. N. Afif et al., The syriac galen palimpsest: a tale of two texts. Manuscr. Stud.: J. Schoenberg Inst. Manuscr. Stud. 3(1), 110–154 (2018a)CrossRefGoogle Scholar
  3. N. Afif et al., Analyzing images, editing texts: The Manchester project. Manuscr. Stud.: J. Schoenberg Inst. Manuscr. Stud. 3(1), 155–185 (2018b)CrossRefGoogle Scholar
  4. M. Alfeld, L. de Viguerie, Recent developments in spectroscopic imaging techniques for historical paintings-a review. Spectrochim. Acta B At. Spectrosc. 136, 81–105 (2017)CrossRefADSGoogle Scholar
  5. M. Alfeld et al., The eye of the medusa: XRF imaging reveals unknown traces of antique polychromy. Anal. Chem. 89(3), 1493–1500 (2017)CrossRefGoogle Scholar
  6. J. Alleon et al., Molecular preservation of 1.88 [thinsp] Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat. Commun. 7, 11977 (2016a)CrossRefADSGoogle Scholar
  7. J. Alleon et al., Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chem. Geol. 437, 98–108 (2016b)CrossRefADSGoogle Scholar
  8. J. Alleon et al., Organic molecular heterogeneities can withstand diagenesis. Sci. Rep. 7(1), 1508 (2017)CrossRefADSGoogle Scholar
  9. J. Anné et al., Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates. J. R. Soc. Interface 11(96), 20140277 (2014)CrossRefGoogle Scholar
  10. J. Anné et al., Visualisation of developmental ossification using trace element mapping. J. Anal. At. Spectrom. 32(5), 967–974 (2017)CrossRefGoogle Scholar
  11. J Anné et al., Morphological and chemical evidence for cyclic bone growth in a fossil hyaena. J. Anal. At. Spectrom. 33(12), 2062–2069 (2018)Google Scholar
  12. H.E. Barden et al., Geochemical evidence of the seasonality, affinity and pigmenation of solenopora jurassica. PLoS One 10(9), e0138305 (2015a)CrossRefGoogle Scholar
  13. H.E. Barden et al., Bacteria or melanosomes? A geochemical analysis of micro-bodies on a tadpole from the Oligocene Enspel Formation of Germany. Palaeobiodivers. Palaeoenviron. 95(1), 33–45 (2015b)CrossRefGoogle Scholar
  14. S. Barkan et al., Extreme high count rate performance with a silicon drift detector and ASIC electronics. Biol. Chem. Res. 2015, 338–344 (2015)Google Scholar
  15. M.J. Bauer, HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays? Phys. Chem. Chem. Phys. 16(27), 13827–13837 (2014)CrossRefGoogle Scholar
  16. R. Belkhou et al., HERMES: a soft X-ray beamline dedicated to X-ray microscopy. J. Synchrotron Radiat. 22(4), 968–979 (2015)CrossRefGoogle Scholar
  17. U. Bergmann, X-Ray Fluorescence Imaging of the Archimedes Palimpsest: A Technical Summary (2005) https://www.slac.stanford.edu/gen/com/images/technical%20summary_final.pdf
  18. U. Bergmann, Archimedes brought to light. Phys. World 20(11), 39–42 (2007)CrossRefGoogle Scholar
  19. U. Bergmann, Imaging with X-ray fluorescence, in The Archimedes Palimpsest (Cambridge University Press, Cambridge, UK, 2011)Google Scholar
  20. U. Bergmann, K.T. Knox, Pseudo-color enhanced X-ray fluorescence imaging of the Archimedes Palimpsest, in Document Recognition and Retrieval XVI, edited by Kathrin Berkner, Laurence Likforman-Sulem, Proc. of SPIE-IS&T Electronic Imaging, SPIE 7247, 724702-1-13 (2009)Google Scholar
  21. U. Bergmann, P. Glatzel, S.P. Cramer, Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy. Microchem. J. 71, 221–230 (2002)CrossRefGoogle Scholar
  22. U. Bergmann et al., Carbon K-edge X-ray Raman spectroscopy supports simple, yet powerful description of aromatic hydrocarbons and asphaltenes. Chem. Phys. Lett. 369(1–2), 184–191 (2003)CrossRefADSGoogle Scholar
  23. U. Bergmann et al., Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc. Natl. Acad. Sci. U. S. A. 107(20), 9060–9065 (2010)CrossRefADSGoogle Scholar
  24. U. Bergmann, P.L. Manning, R.A. Wogelius, Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays. Annu. Rev. Anal. Chem. (Palo Alto, Calif) 5, 361–389 (2012)CrossRefADSGoogle Scholar
  25. S. Bernard et al., XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis. Carbon 48(9), 2506–2516 (2010)CrossRefGoogle Scholar
  26. L. Bertrand et al., Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy. Anal. Bioanal. Chem. 399(9), 3025–3032 (2011)CrossRefGoogle Scholar
  27. L. Bertrand et al., Development and trends in synchrotron studies of ancient and historical materials. Phys. Rep. 519(2), 51–96 (2012)CrossRefADSGoogle Scholar
  28. L. Bertrand et al., A multiscalar photoluminescence approach to discriminate among semiconducting historical zinc white pigments. Analyst 138(16), 4463–4469 (2013)CrossRefADSGoogle Scholar
  29. L. Bertrand et al., The fate of archaeological keratin fibres in a temperate burial context: microtaphonomy study of hairs from Marie de Bretagne (15th c., Orléans, France). J. Archaeol. Sci. 42, 487–499 (2014)CrossRefGoogle Scholar
  30. L. Bertrand et al., Mitigation strategies for radiation damage in the analysis of ancient materials. TrAC Trends Anal. Chem. 66, 128–145 (2015)CrossRefGoogle Scholar
  31. L. Bertrand et al., Emerging approaches in synchrotron studies of materials from cultural and natural history collections, in Analytical Chemistry for Cultural Heritage (Springer, 2017), pp. 1–39Google Scholar
  32. L. Bertrand et al., Paleo-inspired systems: durability, sustainability, and remarkable properties. Angew. Chem. Int. Ed. 57(25), 7288–7295 (2018)CrossRefGoogle Scholar
  33. Big Literary Find in Constantinople; Savant Discovers Books by Archimedes, Copied About 900 A.D. IT OPENS A BIG FIELD Whether the Turks Destroyed the Libraries When They Took the City Always a Disputed Question, New York Times (1907)Google Scholar
  34. U. Boesenberg et al., Fast XANES fluorescence imaging using a Maia detector. J. Synchrotron Radiat. 25(3), 892–898 (2018)CrossRefGoogle Scholar
  35. J. A. van Bokhoven, C. Lamberti (eds.), X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications (Wiley, Chichester, 2016), p. 890Google Scholar
  36. A. Buffet et al., P03, the microfocus and nanofocus X-ray scattering (MiNaXS) beamline of the PETRA III storage ring: the microfocus endstation. J. Synchrotron Radiat. 19(4), 647–653 (2012)CrossRefGoogle Scholar
  37. F. Casadio, V. Rose, High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso. Appl. Phys. A 111(1), 1–8 (2013)CrossRefADSGoogle Scholar
  38. A. Cau et al., Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395 (2017)CrossRefADSGoogle Scholar
  39. S. Chen et al., Synchrotron-based x-ray fluorescence microscopy as a complementary tool to light microscopy/electron microscopy for multi-scale and multi-modality analysis. J. Microsc. Microanal. 24(S2), 88–89 (2018)CrossRefGoogle Scholar
  40. Y.-c.K. Chen-Wiegart et al., Early science commissioning results of the sub-micron resolution X-ray spectroscopy beamline (SRX) in the field of materials science and engineering. AIP Conf. Proc. 1764(1), 030004 (2016)CrossRefGoogle Scholar
  41. Y.-c.K. Chen-Wiegart et al., Elemental and molecular segregation in oil paintings due to lead soap degradation. Sci. Rep. 7(1), 11656 (2017)CrossRefADSGoogle Scholar
  42. W. Christens-Barry, J.R. Easton, K.T. Knox, Imaging and image-processing techniques, in The Archimedes Palimpsest, ed. by R. Netz, W. Noel (Cambridge University Press, Cambridge, UK, 2011)Google Scholar
  43. P.K. Cook et al., Strontium speciation in archaeological otoliths. J. Anal. At. Spectrom. 31(3), 700–711 (2016)CrossRefGoogle Scholar
  44. D. Coster, Y. Nishina, On the quantitative chemical analysis by means of X-ray spectrum. Chem. News 130, 149–152 (1925)Google Scholar
  45. M. Cotte et al., The ID21 X-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials. J. Anal. At. Spectrom. 32(3), 477–493 (2017)CrossRefGoogle Scholar
  46. M. Cotte et al., Applications of synchrotron X-ray nano-probes in the field of cultural heritage. C. R. Phys. 19, 575 (2018)CrossRefADSGoogle Scholar
  47. H. Cullmann, Luigi Cherubini – Médée – Critical Edition of the Original Version (Simrock, Berlin, 2012)Google Scholar
  48. F. Da Pieve et al., Casting light on the darkening of colors in historical paintings. Phys. Rev. Lett. 111(20), 208302 (2013)CrossRefADSGoogle Scholar
  49. C. Darwin, On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life (John Murray, London, 1859)CrossRefGoogle Scholar
  50. D. Davesne et al., Exceptional preservation of a Cretaceous intestine provides a glimpse of the early ecological diversity of spiny-rayed fishes (Acanthomorpha, Teleostei). Sci. Rep. 8(1), 8509 (2018)CrossRefADSGoogle Scholar
  51. F. De Groot, G. Vankó, P. Glatzel, The 1s X-ray absorption pre-edge structures in transition metal oxides. J. Phys. Condens. Matter 21(10), 104207 (2009)CrossRefADSGoogle Scholar
  52. C. Dejoie et al., Crystal structure of an indigo@ silicalite hybrid related to the ancient maya blue pigment. J. Phys. Chem. C 118(48), 28032–28042 (2014a)CrossRefGoogle Scholar
  53. C. Dejoie et al., Learning from the past: rare ε-Fe 2 O 3 in the ancient black-glazed Jian (Tenmoku) wares. Sci. Rep. 4, 4941 (2014b)CrossRefGoogle Scholar
  54. C. Dejoie et al., Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials. J. Appl. Crystallogr. 48(5), 1522–1533 (2015)CrossRefGoogle Scholar
  55. A.J. Dent et al., B18: a core XAS spectroscopy beamline for diamond. J. Phys. Conf. Ser. 190(1), 012039 (2009)CrossRefGoogle Scholar
  56. S. Diaz-Moreno et al., I20; the versatile x-ray absorption spectroscopy beamline at diamond light source. J. Phys.: Conf. Ser. 190, 012038 (2009). IOP PublishingGoogle Scholar
  57. S. Diaz-Moreno et al., The spectroscopy village at diamond light source. J. Synchrotron Radiat. 25(4), 998–1009 (2018)CrossRefGoogle Scholar
  58. A.-C. Dippel et al., Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction. J. Synchrotron Radiat. 22(3), 675–687 (2015)CrossRefGoogle Scholar
  59. M. d’Ischia et al., Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res. 26(5), 616–633 (2013)CrossRefGoogle Scholar
  60. M. Drakopoulos et al., I12: the joint engineering, environment and processing (JEEP) beamline at diamond light source. J. Synchrotron Radiat. 22(3), 828–838 (2015)CrossRefGoogle Scholar
  61. P. Dredge et al., Mapping Henry: synchrotron-sourced X-ray fluorescence mapping and ultra-high-definition scanning of an early Tudor portrait of Henry VIII. Appl. Phys. A 121(3), 789–800 (2015)CrossRefADSGoogle Scholar
  62. P. Dredge et al., Unmasking Sidney Nolan’s Ned Kelly: X-ray fluorescence conservation imaging, art historical interpretation and virtual reality visualisation. Aust. N. Z. J. Art 17(2), 147–161 (2017)Google Scholar
  63. J.P. Echard et al., The nature of the extraordinary finish of Stradivari’s instruments. Angew. Chem. Int. Ed. 49(1), 197–201 (2010)CrossRefGoogle Scholar
  64. J.-P. Echard et al., Synchrotron DUV luminescence micro-imaging to identify and map historical organic coatings on wood. Analyst 140(15), 5344–5353 (2015)CrossRefADSGoogle Scholar
  65. N. Edwards et al., Synchrotron rapid scanning X-ray fluorescence of soft-tissue preserved in fossils. J. Vertebr. Paleontol. 31, 104–104 (2011a)Google Scholar
  66. N.P. Edwards et al., Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin. Proc. R. Soc. B-Biol. Sci. 278(1722), 3209–3218 (2011b)CrossRefGoogle Scholar
  67. N.P. Edwards et al., Mapping prehistoric ghosts in the synchrotron. Appl. Phys. A-Mater. Sci. Process. 111(1), 147–155 (2013)CrossRefADSGoogle Scholar
  68. N.P. Edwards et al., Leaf metallome preserved over 50 million years. Metallomics 6(4), 774–782 (2014)CrossRefGoogle Scholar
  69. N.P. Edwards et al., Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy. Sci. Rep. 6, 34002 (2016)CrossRefADSGoogle Scholar
  70. N.P. Edwards et al., A new synchrotron rapid-scanning X-ray fluorescence (SRS-XRF) imaging station at SSRL beamline 6-2. J. Synchrotron Radiat. 25, 1565–1573 (2018)CrossRefGoogle Scholar
  71. V.M. Egerton et al., The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird. J. Anal. At. Spectrom. 30(3), 627–634 (2015)CrossRefGoogle Scholar
  72. D.J. Field et al., Melanin concentration gradients in modern and fossil feathers. PLoS One 8(3), e59451 (2013)CrossRefADSMathSciNetGoogle Scholar
  73. J. Fildes, X-rays reveal Archimedes’ Secrets, BBC News (2006)Google Scholar
  74. M. Freudenberg, L. Glaser, The axe from Ahneby – non-destructive view with X-rays inside the object, in Interactions Without Borders, ed. by B.V. Eriksen, et al. (2017), pp. 103–110Google Scholar
  75. D. Friebel et al., In situ X-ray probing reveals fingerprints of surface platinum oxide. Phys. Chem. Chem. Phys. 13(1), 262–266 (2011)CrossRefGoogle Scholar
  76. E.S. Friedman et al., Synchrotron radiation-based X-ray analysis of bronze artifacts from an Iron Age site in the Judean Hills. J. Archaeol. Sci. 35(7), 1951–1960 (2008)CrossRefGoogle Scholar
  77. A.A. Gambardella et al., Sulfur K-edge XANES of lazurite: toward determining the provenance of lapis lazuli. Microchem. J. 125, 299–307 (2016)CrossRefGoogle Scholar
  78. M. Ganio et al., From lapis lazuli to ultramarine blue: investigating Cennino Cennini’s recipe using sulfur K-edge XANES. Pure Appl. Chem. 90(3), 463–475 (2018)CrossRefGoogle Scholar
  79. M. Gay et al., Palaeolithic paint palettes used at La Garma Cave (Cantabria, Spain) investigated by means of combined in situ and synchrotron X-ray analytical methods. J. Anal. At. Spectrom. 30(3), 767–776 (2015)CrossRefGoogle Scholar
  80. C. Gervais et al., Why does Prussian blue fade? Understanding the role (s) of the substrate. J. Anal. At. Spectrom. 28(10), 1600–1609 (2013)CrossRefGoogle Scholar
  81. C. Gervais et al., X-ray photochemistry of Prussian blue cellulosic materials: evidence for a substrate-mediated redox process. Langmuir 31(29), 8168–8175 (2015)CrossRefGoogle Scholar
  82. A. Gibson et al., An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms. Herit. Sci. 6, 7 (2018)CrossRefGoogle Scholar
  83. K. Gilmore et al., Efficient implementation of core-excitation Bethe–Salpeter equation calculations. Comput. Phys. Commun. 197, 109–117 (2015)CrossRefADSMathSciNetGoogle Scholar
  84. L. Glaser, Tagungsband Archäometrie und Denkmalpflege 2016 (Verlag Deutsches Elektronen-Synchrotron, Göttingen., 2016-09-28–2016-10-01, 2016)Google Scholar
  85. L. Glaser, Archäometrie und Denkmalpflege 2018: Proceedings; 1st, in DESY-PROC. Hamburg 20 Mar 2018–24 Mar 2018, Hamburg (Germany) Y2 20 Mar 2018–24 Mar 2018 M2 (Verlag Deutsches Elektronen-Synchrotron, Hamburg, 2018)Google Scholar
  86. P. Glatzel, U. Bergmann, High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information. Coord. Chem. Rev. 249(1–2), 65–95 (2005)CrossRefGoogle Scholar
  87. L.G. Gonzalez et al., Effects of isopropanol on collagen fibrils in new parchment. Chem. Cent. J. 6(1), 24 (2012)CrossRefGoogle Scholar
  88. P. Gueriau et al., Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils. PLoS One 9(1), e86946 (2014)CrossRefADSGoogle Scholar
  89. P. Gueriau, C. Mocuta, L. Bertrand, Cerium anomaly at microscale in fossils. Anal. Chem. 87(17), 8827–8836 (2015)CrossRefGoogle Scholar
  90. P. Gueriau et al., Noninvasive synchrotron-based X-ray Raman scattering discriminates carbonaceous compounds in ancient and historical materials. Anal. Chem. 89(20), 10819–10826 (2017)CrossRefGoogle Scholar
  91. A. Haibel et al., Latest developments in microtomography and nanotomography at PETRA III. Powder Diffract. 25(2), 161–164 (2010a)CrossRefADSGoogle Scholar
  92. A. Haibel, et al. Micro-and nano-tomography at the GKSS imaging beamline at PETRA III, in SPIE Optical Engineering + Applications (SPIE, 2010b)Google Scholar
  93. K. Hämäläinen et al., Elimination of the inner-shell lifetime broadening in x-ray-absorption spectroscopy. Phys. Rev. Lett. 67(20), 2850 (1991)CrossRefADSGoogle Scholar
  94. D. Harazim et al., Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone. Geology 43(11), 1007–1010 (2015)CrossRefADSGoogle Scholar
  95. S. Hoerlé et al., Imaging the layered fabric of paints from Nomansland rock art (South Africa). Archaeometry 58, 182–199 (2016)CrossRefGoogle Scholar
  96. J. Hormes et al., Mortar samples from the Abbey of Saint John at Mustair: a combined spatially resolved X-ray fluorescence and X-ray absorption (XANES) study. J. Anal. At. Spectrom. 30, 702–706 (2015)CrossRefGoogle Scholar
  97. L. Hou et al., A diapsid skull in a new species of the primitive bird Confuciusornis. Nature 399(6737), 679 (1999)CrossRefADSGoogle Scholar
  98. D.L. Howard et al., High-definition X-ray fluorescence elemental mapping of paintings. J. Anal. Chem. 84(7), 3278–3286 (2012)CrossRefGoogle Scholar
  99. S. Huotari et al., Direct tomography with chemical-bond contrast. Nat. Mater. 10, 489 (2011)CrossRefADSMathSciNetGoogle Scholar
  100. S. Huotari et al., A large-solid-angle X-ray Raman scattering spectrometer at ID20 of the European Synchrotron Radiation Facility. J. Synchrotron Radiat. 24(2), 521–530 (2017)CrossRefGoogle Scholar
  101. S. Ito et al., Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res. 24(4), 605–613 (2011)CrossRefGoogle Scholar
  102. S. Ivo de Oliveira et al., Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26(19), 2594–2601 (2016)CrossRefGoogle Scholar
  103. M.D. Jackson et al., Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete. J. Am. Ceram. Soc. 96(8), 2598–2606 (2013)CrossRefGoogle Scholar
  104. M.D. Jackson et al., Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. Proc. Natl. Acad. Sci. 111(52), 18484–18489 (2014)CrossRefADSGoogle Scholar
  105. M.D. Jackson et al., Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am. Mineral.: J. Earth Planet. Mater. 102(7), 1435–1450 (2017)CrossRefGoogle Scholar
  106. K. Janssens, K. Proost, G. Falkenberg, Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: characteristics and possibilities. J. Spectrochim. Acta B: At. Spectrosc. 59(10–11), 1637–1645 (2004)CrossRefADSGoogle Scholar
  107. J.E. Johnson et al., Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 110(28), 11238–11243 (2013)CrossRefADSGoogle Scholar
  108. J.E. Johnson et al., Manganese mineralogy and diagenesis in the sedimentary rock record. Geochim. Cosmochim. Acta 173, 210–231 (2016)CrossRefADSGoogle Scholar
  109. M.W. Jones et al., Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian synchrotron XFM beamline. J. Synchrotron Radiat. 23(5), 1151–1157 (2016)CrossRefGoogle Scholar
  110. M.D. de Jonge et al., Spiral scanning X-ray fluorescence computed tomography. Opt. Express 25(19), 23424–23436 (2017)CrossRefADSGoogle Scholar
  111. K. Kaznatcheev et al., Soft X-ray spectromicroscopy beamline at the CLS: commissioning results. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 582(1), 96–99 (2007)CrossRefADSGoogle Scholar
  112. I. Kempson et al., Large area synchrotron X-ray fluorescence mapping of biological samples. J. Instrum. 9(12), C12040 (2014)CrossRefGoogle Scholar
  113. C.J. Kennedy et al., Studies of hair for use in lime plaster: implications for conservation and new work. Polym. Degrad. Stab. 98(4), 894–898 (2013)CrossRefGoogle Scholar
  114. F. Kergourlay et al., Stabilization treatment of cultural heritage artefacts: in situ monitoring of marine iron objects dechlorinated in alkali solution. Corros. Sci. 132, 21–34 (2018)CrossRefGoogle Scholar
  115. H.J. Kirkwood et al., Simultaneous X-ray diffraction, crystallography and fluorescence mapping using the Maia detector. Acta Mater. 144, 1–10 (2018)CrossRefGoogle Scholar
  116. D. C. Koningsberger, R. Prins (eds.), X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988)Google Scholar
  117. M.S. Kozachuk et al., Exploring tarnished daguerreotypes with synchrotron light: XRF and mu-XANES analysis. Herit. Sci. 6, 12 (2018)CrossRefGoogle Scholar
  118. M. Krisch, F. Sette, X-ray Raman scattering from low Z materials. J Surf. Rev. Lett. 9(02), 969–976 (2002)CrossRefADSGoogle Scholar
  119. M.H. Krisch et al., Momentum transfer dependence of inelastic X-ray scattering from the Li $\mathit{K}$ edge. Phys. Rev. Lett. 78(14), 2843–2846 (1997)CrossRefADSGoogle Scholar
  120. R.S.K. Lam et al., Anisotropy of chemical bonds in collagen molecules studied by x-ray absorption near-edge structure (XANES) spectroscopy. ACS Chem. Biol. 7(3), 476–480 (2012)CrossRefGoogle Scholar
  121. A. Lanzirotti et al., High-speed, coupled micro-beam XRD/XRF/XAFS mapping at GSECARS: APS beamline 13-ID-E. Clays Clay Miner. 21, 53–64 (2016)Google Scholar
  122. N.L. Larson et al., A new look at fossil cephalopods, in Cephalopods – Present and Past, ed. by K. Tanabe et al., (Tokai University Press, Tokyo, 2010), pp. 303–314Google Scholar
  123. Y. Leon et al., The nature of marbled Terra Sigillata slips: a combined μXRF and μXRD investigation. Appl. Phys. A 99(2), 419–425 (2010)CrossRefADSGoogle Scholar
  124. Y. Leon et al., Evolution of terra sigillata technology from Italy to Gaul through a multi-technique approach. J. Anal. At. Spectrom. 30(3), 658–665 (2015)CrossRefMathSciNetGoogle Scholar
  125. S. Li et al., Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J. Geophys. Res. Solid Earth 118(3), 791–807 (2013)CrossRefADSGoogle Scholar
  126. Z. Liu et al., Influence of Taoism on the invention of the purple pigment used on the Qin terracotta warriors. J. Archaeol. Sci. 34(11), 1878–1883 (2007)CrossRefGoogle Scholar
  127. P. Lynch et al., Application of white-beam X-ray microdiffraction for the study of mineralogical phase identification in ancient Egyptian pigments. J. Appl. Crystallogr. 40(6), 1089–1096 (2007)CrossRefGoogle Scholar
  128. A. MacDowell et al., X-ray micro-tomography at the Advanced Light Source, in Developments in X-Ray Tomography VIII (International Society for Optics and Photonics, 2012)Google Scholar
  129. I.D. MacLeod, The application of chemistry to conserve cultural heritage. Teach. Sci. 61(2), 52 (2015)MathSciNetGoogle Scholar
  130. P.L. Manning et al., Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird. J. Anal. At. Spectrom. 28(7), 1024–1030 (2013)CrossRefGoogle Scholar
  131. I. Mantouvalou et al., Reconstruction of thickness and composition of stratified materials by means of 3D micro X-ray fluorescence spectroscopy. J. Anal. Chem. 80(3), 819–826 (2008)CrossRefGoogle Scholar
  132. W.L. Mao et al., Bonding changes in compressed superhard graphite. Science 302(5644), 425–427 (2003)CrossRefADSGoogle Scholar
  133. K.J. McGraw, Melanins, metals, and mate quality. Oikos 102(11), 402–406 (2003)CrossRefGoogle Scholar
  134. F. Meirer et al., Full-field XANES analysis of Roman ceramics to estimate firing conditions – a novel probe to study hierarchical heterogeneous materials. J. Anal. At. Spectrom. 28(12), 1870–1883 (2013)CrossRefGoogle Scholar
  135. H. von Meyer, Vogel-Feder und Palpipes priscus von Solenhofen. N. Jahrb. Mineral. Geognosie Geol. Petrefakten-Kunde 1861, 561 (1861a)Google Scholar
  136. H. von Meyer, Archaeopteryx lithographica (Vogelfeder) und Pterodactylus von Solnhofen. N. Jahrb. Mineral. Geognosie Geol. Petrefakten-Kunde 1861(6), 678–679 (1861b)Google Scholar
  137. A. Michelin et al., Investigation at the nanometre scale on the corrosion mechanisms of archaeological ferrous artefacts by STXM. J. Anal. At. Spectrom. 28(1), 59–66 (2013)CrossRefGoogle Scholar
  138. N. Mills, Something old, something new: ancient culture at the Australian Synchrotron. Chem. Aust. 77(10), 20 (2010)Google Scholar
  139. H. Mimura et al., Breaking the 10 nm barrier in hard-X-ray focusing. Nat. Phys. 6, 122 (2009)CrossRefGoogle Scholar
  140. C. Mirguet, Microscanning XRF, XANES, and XRD Studies of the Decorated Surface of Roman Terra Sigillata Ceramics (2009)Google Scholar
  141. Y. Mizuno, Y. Mizuno, Y. Ohmura, J. Phys. Soc. Jpn. 22, 445 (1967). J. Phys. Soc. Jpn., 1967. 22, 445CrossRefADSGoogle Scholar
  142. M. Moini, C.M. Rollman, L. Bertrand, Assessing the impact of synchrotron X-ray irradiation on proteinaceous specimens at macro and molecular levels. Anal. Chem. 86(19), 9417–9422 (2014)CrossRefGoogle Scholar
  143. L. Monico et al., Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 3. Synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment. Anal. Chem. 85(2), 851–859 (2013)CrossRefGoogle Scholar
  144. L. Monico et al., Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh. J. Anal. At. Spectrom. 30(3), 613–626 (2015)CrossRefGoogle Scholar
  145. J.F.W. Mosselmans et al., I18–the microfocus spectroscopy beamline at the diamond light source. J. Synchrotron Radiat. 16(6), 818–824 (2009)CrossRefGoogle Scholar
  146. A. Možir et al., A study of degradation of historic parchment using small-angle X-ray scattering, synchrotron-IR and multivariate data analysis. Anal. Bioanal. Chem. 402(4), 1559–1566 (2012)CrossRefGoogle Scholar
  147. C.A. Murray et al., New synchrotron powder diffraction facility for long-duration experiments. J. Appl. Crystallogr. 50(1), 172–183 (2017)CrossRefGoogle Scholar
  148. R. Netz, W. Noel, The Archimedes Codex (Da Capo Press, Perseus Book Group, Philadelphia, 2007)zbMATHGoogle Scholar
  149. R. Netz et al., The Archimedes Palimpsest (Cambridge University Press, Cambridge, UK, 2011)zbMATHGoogle Scholar
  150. M.J. Newville, IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8(2), 322–324 (2001)CrossRefGoogle Scholar
  151. T. Nietzold et al., Quantifying X-ray fluorescence data using MAPS. J. Vis. Exp. 132, e56042 (2018)Google Scholar
  152. M.A. Norell, X. Xu, Feathered dinosaurs. Annu. Rev. Earth Planet. Sci. 33, 277–299 (2005)CrossRefADSGoogle Scholar
  153. M. Notis et al., Synchrotron X-ray diffraction and fluorescence study of the astrolabe. Appl. Phys. A 111(1), 129–134 (2013)CrossRefADSGoogle Scholar
  154. G. Paris et al., Neoarchean carbonate–associated sulfate records positive Δ33S anomalies. Science 346(6210), 739–741 (2014)CrossRefADSGoogle Scholar
  155. D. Paterson et al., The X-ray fluorescence microscopy beamline at the Australian synchrotron, in AIP Conference Proceedings (AIP, 2011)Google Scholar
  156. R.S. Popelka-Filcoff et al., Microelemental characterisation of Aboriginal Australian natural Fe oxide pigments. Anal. Methods 7(17), 7363–7380 (2015)CrossRefGoogle Scholar
  157. R.S. Popelka-Filcoff et al., Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects. Analyst 141(12), 3657–3667 (2016)CrossRefADSGoogle Scholar
  158. B.F.G. Popescu et al., Mapping metals in Parkinson’s and normal brain using rapid-scanning x-ray fluorescence. J Phys. Med. Biol. 54(3), 651 (2009a)CrossRefGoogle Scholar
  159. B.F.G. Popescu et al., Synchrotron X-ray fluorescence reveals abnormal metal distributions in brain and spinal cord in spinocerebellar ataxia: a case report. Cerebellum 8(3), 340–351 (2009b)CrossRefGoogle Scholar
  160. B.F.G. Popescu et al., Iron, copper, and zinc distribution of the cerebellum. Cerebellum 8(2), 74–79 (2009c)CrossRefGoogle Scholar
  161. J. Qiang et al., Two feathered dinosaurs from northeastern China. Nature 393(6687), 753 (1998)CrossRefADSGoogle Scholar
  162. P. Quinn et al., in XRM 2018 Microscopy and Microanalysis Proceedings (2018)Google Scholar
  163. M. Radtke et al., Beyond the great wall: gold of the silk roads and the first empire of the steppes. Anal. Chem. 85(3), 1650–1656 (2013)CrossRefGoogle Scholar
  164. M. Radtke et al., Double dispersive X-ray fluorescence (D2XRF) based on an energy dispersive pnCCD detector for the detection of platinum in gold. Microchem. J. 125, 56–61 (2016)CrossRefGoogle Scholar
  165. C. Rau, Imaging with coherent synchrotron radiation: X-ray imaging and coherence beamline (I13) at diamond light source. Synchrotron Radiat. News 30(5), 19–25 (2017)CrossRefGoogle Scholar
  166. C. Rau et al., Coherent imaging at the diamond beamline I13. Phys. Status Solidi A 208(11), 2522–2525 (2011)CrossRefADSGoogle Scholar
  167. B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005)CrossRefGoogle Scholar
  168. M.R. Raven et al., Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. Nat. Commun. 9(1), 3409 (2018)CrossRefADSGoogle Scholar
  169. S. Réguer et al., Iron corrosion in archaeological context: structural refinement of the ferrous hydroxychloride β-Fe2 (OH) 3Cl. Corros. Sci. 100, 589–598 (2015)CrossRefGoogle Scholar
  170. I. Reiche et al., Spatially resolved synchrotron radiation induced X-ray fluorescence analyses of rare Rembrandt silverpoint drawings. Appl. Phys. A 83(2), 169–173 (2006)CrossRefADSMathSciNetGoogle Scholar
  171. I. Reiche et al., Synchrotron radiation and laboratory micro x-ray computed tomography—useful tools for the material identification of prehistoric objects made of ivory, bone or antler. J. Anal. At. Spectrom. 26(9), 1802–1812 (2011)CrossRefGoogle Scholar
  172. H. Riesemeier et al., Layout and first XRF applications of the BAMline at BESSY II. X-Ray Spectrom. Int. J. 34(2), 160–163 (2005)CrossRefADSGoogle Scholar
  173. P. Riley, Melanin. Int. J. Biochem. Cell Biol. 29(11), 1235–1239 (1997)CrossRefGoogle Scholar
  174. E.C. Robertson, R. Blyth, XANES Investigation of the Effects of Heat Treatment on an Archaeological Tool Stone, Canadian Light Source 2008 Activity Report (2009), pp. 96–97Google Scholar
  175. N. Robin et al., A carboniferous mite on an insect reveals the antiquity of an inconspicuous interaction. Curr. Biol. 26(10), 1376–1382 (2016)CrossRefGoogle Scholar
  176. L. Robinet et al., Investigation of the discoloration of smalt pigment in historic paintings by micro-X-ray absorption spectroscopy at the Co K-edge. Anal. Chem. 83(13), 5145–5152 (2011)CrossRefGoogle Scholar
  177. S.V. Roth et al., In situ observation of cluster formation during nanoparticle solution casting on a colloidal film. J. Phys. Condens. Matter 23(25), 254208 (2011)CrossRefADSGoogle Scholar
  178. V. Rouchon, S. Bernard, Mapping iron gall ink penetration within paper fibres using scanning transmission X-ray microscopy. J. Anal. At. Spectrom. 30(3), 635–641 (2015)CrossRefGoogle Scholar
  179. J.-P. Rueff, A. Shukla, Inelastic x-ray scattering by electronic excitations under high pressure. Rev. Mod. Phys. 82(1), 847–896 (2010)CrossRefADSGoogle Scholar
  180. J.P. Rueff et al., The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range. J. Synchrotron Radiat. 22(1), 175–179 (2015)CrossRefGoogle Scholar
  181. C. Ryan et al., Elemental X-ray imaging using the Maia detector array: the benefits and challenges of large solid-angle. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 619(1–3), 37–43 (2010)CrossRefADSGoogle Scholar
  182. C. Ryan et al., Maia X-ray fluorescence imaging: capturing detail in complex natural samples, in Journal of Physics: Conference Series (IOP Publishing, 2014)Google Scholar
  183. C. Ryan et al., The Maia detector journey: development, capabilities and applications. J. Microsc. Microanal. 24(S1), 720–721 (2018)CrossRefGoogle Scholar
  184. C. Ryan, et al., The New Maia detector system: methods for high definition trace element imaging of natural Material, in AIP Conference Proceedings (AIP, 2010)Google Scholar
  185. B. Sadeghi, U. Bergmann, The codex of a companion of the prophet and the Qur’ān of the prophet. Arabica 57(4), 343–436 (2010)CrossRefGoogle Scholar
  186. C.J. Sahle et al., Planning, performing and analyzing x-ray Raman scattering experiments. J. Synchrotron Radiat. 22(2), 400–409 (2015)CrossRefGoogle Scholar
  187. C.J. Sahle et al., Improving the spatial and statistical accuracy in X-ray Raman scattering based direct tomography. J. Synchrotron Radiat. 24(2), 476–481 (2017)CrossRefGoogle Scholar
  188. N. Schell et al., The high energy materials science beamline (HEMS) at PETRA III. Mater. Sci. Forum 772, 57–61 (2014)CrossRefGoogle Scholar
  189. J. Schönenberger et al., Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the Late Cretaceous (Santonian) of Georgia, USA. Ann. Bot. 109(5), 921–936 (2012)CrossRefGoogle Scholar
  190. C.G. Schroer et al., Hard X-ray nanoprobe at beamline P06 at PETRA III. Nucl. Instrum. Methods Phys. Res. Sect. A 616(2), 93–97 (2010)CrossRefADSGoogle Scholar
  191. W. Schülke et al., Interband transitions and core excitation in highly oriented pyrolytic graphite studied by inelastic synchrotron x-ray scattering: band-structure information. Phys. Rev. B 38(3), 2112–2123 (1988)CrossRefADSGoogle Scholar
  192. P. Sciau et al., Micro scanning X-ray diffraction study of Gallo-Roman Terra Sigillata ceramics. Appl. Phys. A 83(2), 219–224 (2006)CrossRefADSGoogle Scholar
  193. P. Sciau et al., Reverse engineering the ancient ceramic technology based on x-ray fluorescence spectromicroscopy. J. Anal. At. Spectrom. 26(5), 969–976 (2011)CrossRefGoogle Scholar
  194. R.F. Service, Imaging. Brilliant X-rays reveal fruits of a brilliant mind. Science 313(5788), 744 (2006)CrossRefGoogle Scholar
  195. N. Sharp-Paul, Synchrotron research solves art mystery, Synchrotron Radiation News, 30(2), 47–48, (2017) https://doi.org/10.1080/08940886.2017.1289812
  196. M.J.N. Siegbahn, Relations between the K and L series of the high-frequency spectra. Nature 96(2416), 676 (1916)Google Scholar
  197. H. Simon et al., A synchrotron-based study of the Mary Rose Iron cannonballs. Angew. Chem. Int. Ed. 57, 7390–7395 (2018)CrossRefGoogle Scholar
  198. S.P. Slotznick et al., Iron mineralogy and redox chemistry of the mesoproterozoic Newland formation in the Helena embayment, belt supergroup, Montana. Northwest Geol. 44, 55–72 (2015)Google Scholar
  199. D. Sokaras et al., A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford synchrotron radiation lightsource. Rev. Sci. Instrum. 83(4), 043112 (2012)CrossRefADSGoogle Scholar
  200. A. Somogyi et al., Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil, in X-Ray Nanoimaging: Instruments and Methods III (International Society for Optics and Photonics, 2017)Google Scholar
  201. M. Stampanoni et al., in Trends in Synchrotron-Based Tomographic Imaging: The SLS Experience, vol. 6318 (2006)Google Scholar
  202. F. Stebner et al., A fossil biting midge (Diptera: Ceratopogonidae) from early Eocene Indian amber with a complex pheromone evaporator. Sci. Rep. 6, 34352 (2016)CrossRefADSGoogle Scholar
  203. J. Stohr, NEXAFS Spectroscopy, vol 25 (Springer, Berlin, 1992)CrossRefGoogle Scholar
  204. J. Strempfer et al., Resonant scattering and diffraction beamline P09 at PETRA III. J. Synchrotron Radiat. 20(4), 541–549 (2013)CrossRefGoogle Scholar
  205. T. Suzuki, X-ray Raman scattering experiment. I. J. Phys. Soc. Jpn. 22(5), 1139–1150 (1967)CrossRefADSGoogle Scholar
  206. T. Swanston et al., Element localization in archaeological bone using synchrotron radiation X-ray fluorescence: identification of biogenic uptake. J. Archaeol. Sci. 39(7), 2409–2413 (2012)CrossRefGoogle Scholar
  207. T. Swanston et al., Synchrotron X-ray fluorescence imaging evidence of biogenic mercury identified in a burial in colonial Antigua. J. Archaeol. Sci. 58, 26–30 (2015)CrossRefGoogle Scholar
  208. C.C. Swisher III et al., Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature 400(6739), 58 (1999)CrossRefADSGoogle Scholar
  209. P. Tafforeau et al., Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl. Phys. A 83(2), 195–202 (2006)CrossRefADSGoogle Scholar
  210. M. Takahashi, P.S. Herendeen, X. Xiao, Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan. J. Plant Res. 130(5), 809–826 (2017)CrossRefGoogle Scholar
  211. S. Thompson et al., Beamline I11 at diamond: a new instrument for high resolution powder diffraction. Rev. Sci. Instrum. 80(7), 075107 (2009)CrossRefADSGoogle Scholar
  212. M. Thoury et al., High spatial dynamics-photoluminescence imaging reveals the metallurgy of the earliest lost-wax cast object. Nat. Commun. 7, 13356 (2016)CrossRefADSGoogle Scholar
  213. D. Thurrowgood et al., A hidden portrait by Edgar Degas. Sci. Rep. 6, 29594 (2016)CrossRefADSGoogle Scholar
  214. K. Tohji, Y. Udagawa, Novel approach for structure analysis by X-ray Raman scattering. Phys. Rev. B 36(17), 9410 (1987)CrossRefADSGoogle Scholar
  215. K. Tohji, Y. Udagawa, X-ray Raman scattering as a substitute for soft-X-ray extended X-ray-absorption fine structure. Phys. Rev. B 39(11), 7590 (1989)CrossRefADSGoogle Scholar
  216. S. Vogt, A. Lanzirotti, Trends in X-ray fluorescence microscopy. Synchrotron Radiat. News 26(2), 32–38 (2013)CrossRefGoogle Scholar
  217. M.S. Walton et al., Material evidence for the use of attic white-ground lekythoi ceramics in cremation burials. J. Archaeol. Sci. 37(5), 936–940 (2010)CrossRefGoogle Scholar
  218. N. Watanabe et al., Anisotropy of hexagonal boron nitride core absorption spectra by x-ray Raman spectroscopy. Appl. Phys. Lett. 69(10), 1370–1372 (1996)CrossRefADSGoogle Scholar
  219. T. Weitkamp et al., Progress in microtomography at the ANATOMIX beamline of synchrotron soleil. Microsc. Microanal. 24(S2), 246–247 (2018)CrossRefGoogle Scholar
  220. P. Wellnhofer, Archaeopteryx: Der Urvogel von Solnhofen (Verlag Dr. Friedrich Pfeil, München, 2008)Google Scholar
  221. P. Wellnhofer, F. Haase, Archaeopteryx: The Icon of Evolution (F. Pfeil, Munich, 2009)Google Scholar
  222. P. Wernet et al., The structure of the first coordination shell in liquid water. Science 304(5673), 995–999 (2004)CrossRefADSGoogle Scholar
  223. F. Wilde et al., Micro-CT at the imaging beamline P05 at PETRA III. AIP Conf. Proc. 1741(1), 030035 (2016)CrossRefGoogle Scholar
  224. R.A. Wogelius et al., Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333(6049), 1622–1626 (2011)CrossRefADSGoogle Scholar
  225. A.R. Woll et al., Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. J. Appl. Phys. A 83(2), 235–238 (2006)CrossRefADSGoogle Scholar
  226. A.R. Woll et al., The unique history of the armorer’s shop: an application of confocal X-ray fluorescence microscopy. Stud. Cons. 53(2), 93–109 (2008)CrossRefGoogle Scholar
  227. H. Yan et al., Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses. Opt. Express 19(16), 15069–15076 (2011)CrossRefADSGoogle Scholar
  228. M. Young et al., Non-invasive characterization of manufacturing techniques and corrosion of ancient Chinese bronzes and a later replica using synchrotron x-ray diffraction. Appl. Phys. A 100(3), 635–646 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uwe Bergmann
    • 1
    Email author
  • Loïc Bertrand
    • 2
    • 3
  • Nicholas P. Edwards
    • 4
  • Phillip L. Manning
    • 5
  • Roy A. Wogelius
    • 5
  1. 1.Stanford PULSE Institute, SLAC National Accelerator LaboratoryMenlo ParkUSA
  2. 2.IPANEMA CNRS MIC UVSQUniversité Paris-SaclayGif-sur-YvetteFrance
  3. 3.Synchrotron SOLEILGif-sur-YvetteFrance
  4. 4.Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkUSA
  5. 5.School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient LifeUniversity of ManchesterManchesterUK

Personalised recommendations