Advertisement

X-Ray Studies of Energy Materials

  • Elizabeth C. Miller
  • Michael F. ToneyEmail author
Living reference work entry

Abstract

Energy conversion and storage materials are a rapidly growing and powerful application of synchrotron radiation. Understanding these materials from the atomic level through the bulk is central to designing the next generation of more efficient devices. In this chapter, X-ray characterization of energy materials will be discussed using batteries as a sample system. Batteries incorporate several characteristics that take full advantage of the strengths of synchrotron radiation including multiple length scales, multimodal characterization, and operando experiments. Here, a systematic look at the capabilities of synchrotron radiation to study batteries via scattering, spectroscopy, and imaging will be presented with a focus on both conventional cell geometries and customized electrochemical cell designs. After reviewing current methods, a brief outlook on the future of energy material characterization will be offered.

Keywords

Operando Electrochemical characterization Batteries X-ray scattering X-ray imaging X-ray spectroscopy Energy storage Energy conversion 

References

  1. N. Aoki, A. Omachi, K. Uosaki, T. Kondo, ChemElectroChem 3, 959 (2016)CrossRefGoogle Scholar
  2. V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, Nat. Mater. 12, 518 (2013)ADSCrossRefGoogle Scholar
  3. S. Axnanda, E.J. Crumlin, B. Mao, S. Rani, R. Chang, P.G. Karlsson, M.O.M. Edwards, M. Lundqvist, R. Moberg, P. Ross, Z. Hussain, Z. Liu, Sci. Rep. 5, 9788 (2015)ADSCrossRefGoogle Scholar
  4. N.C. Bartelt, Y. Li, J.D. Sugar, K. Fenton, A.L.D. Kilcoyne, D.A. Shapiro, T. Tyliszczak, W.C. Chueh, F. El Gabaly, Phys. Rev. Appl. 10, 1 (2018)CrossRefGoogle Scholar
  5. P.M. Bertsch, D.B. Hunter, Chem. Rev. 101, 1809 (2001)CrossRefGoogle Scholar
  6. M. Bini, S. Ferrari, D. Capsoni, P. Mustarelli, G. Spina, F. Del Giallo, M. Lantieri, C. Leonelli, A. Rizzuti, V. Massarotti, RSC Adv. 2, 250 (2012)CrossRefGoogle Scholar
  7. U. Boesenberg, M. Falk, C.G. Ryan, R. Kirkham, M. Menzel, J. Janek, M. Fröba, G. Falkenberg, U.E.A. Fittschen, Chem. Mater. 27, 2525 (2015)CrossRefGoogle Scholar
  8. U. Boesenberg, C.G. Ryan, R. Kirkham, D.P. Siddons, M. Alfeld, J. Garrevoet, T. Núñez, T. Claussen, T. Kracht, G. Falkenberg, J. Synchrotron Radiat. 23, 1550 (2016)CrossRefGoogle Scholar
  9. O.J. Borkiewicz, B. Shyam, K.M. Wiaderek, C. Kurtz, P.J. Chupas, K.W. Chapman, J. Appl. Crystallogr. 45, 1261 (2012)CrossRefGoogle Scholar
  10. O.J. Borkiewicz, K.M. Wiaderek, P.J. Chupas, K.W. Chapman, J. Phys. Chem. Lett. 6, 2081 (2015)CrossRefGoogle Scholar
  11. A. Braun, S. Seifert, P. Thiyagarajan, S.P. Cramer, E.J. Cairns, Electrochem. Commun. 3, 136 (2001)CrossRefGoogle Scholar
  12. C. Cao, H.G. Steinrück, B. Shyam, K.H. Stone, M.F. Toney, Nano Lett. 16, 7394 (2016)ADSCrossRefGoogle Scholar
  13. C. Cao, H.G. Steinrück, B. Shyam, M.F. Toney, Adv. Mater. Interfaces 4, 1 (2017)Google Scholar
  14. M. Cuisinier, P. Cabelguen, S. Evers, G. He, M. Kolbeck, A. Garsuch, T. Bolin, M. Balasubramanian, L.F. Nazar, J. Phys. Chem. Lett. 4, 3227 (2013)CrossRefGoogle Scholar
  15. R. Dominko, R. Demir-Cakan, M. Morcrette, J.M. Tarascon, Electrochem. Commun. 13, 117 (2011)CrossRefGoogle Scholar
  16. D.S. Eastwood, P.M. Bayley, H.J. Chang, O.O. Taiwo, J. Vila-Comamala, D.J.L. Brett, C. Rau, P.J. Withers, P.R. Shearing, C.P. Grey, P.D. Lee, Chem. Commun. 51, 266 (2015)CrossRefGoogle Scholar
  17. Z. Feng, E. Sarnello, T. Li, L. Cheng, J. Electrochem. Soc. 166, A47 (2019)CrossRefGoogle Scholar
  18. D.P. Finegan, M. Scheel, J.B. Robinson, B. Tjaden, I. Hunt, T.J. Mason, J. Millichamp, M. Di Michiel, G.J. Offer, G. Hinds, D.J.L. Brett, P.R. Shearing, Nat. Commun. 6, 1 (2015)CrossRefGoogle Scholar
  19. D.P. Finegan, E. Darcy, M. Keyser, B. Tjaden, T.M.M. Heenan, R. Jervis, J.J. Bailey, N.T. Vo, O.V. Magdysyuk, M. Drakopoulos, M. Di Michiel, A. Rack, G. Hinds, D.J.L. Brett, P.R. Shearing, Adv. Sci. 5, 1700369 (2018)CrossRefGoogle Scholar
  20. J. Fink, E. Schierle, E. Weschke, J. Geck, Rep Prog. Phys. 76, 056502 (2013)ADSCrossRefGoogle Scholar
  21. T.T. Fister, M. Schmidt, P. Fenter, C.S. Johnson, M.D. Slater, M.K.Y. Chan, E.L. Shirley, J. Chem. Phys. 135, 224513 (2011)ADSCrossRefGoogle Scholar
  22. T.T. Fister, J. Esbenshade, X. Chen, B.R. Long, B. Shi, C.M. Schlepütz, A.A. Gewirth, M.J. Bedzyk, P. Fenter, Adv. Energy Mater. 4, 1 (2014)CrossRefGoogle Scholar
  23. W.E. Gent, K. Lim, Y. Liang, Q. Li, T. Barnes, S.J. Ahn, K.H. Stone, M. McIntire, J. Hong, J.H. Song, Y. Li, A. Mehta, S. Ermon, T. Tyliszczak, D. Kilcoyne, D. Vine, J.H. Park, S.K. Doo, M.F. Toney, W. Yang, D. Prendergast, W.C. Chueh, Nat. Commun. 8, 2091 (2017)ADSCrossRefGoogle Scholar
  24. Y. Gorlin, A. Siebel, M. Piana, T. Huthwelker, H. Jha, G. Monsch, F. Kraus, H.A. Gasteiger, M. Tromp, J. Electrochem. Soc. 162, A1146 (2015)CrossRefGoogle Scholar
  25. I. Gurevitch, R. Buonsanti, A.A. Teran, B. Gludovatz, R.O. Ritchie, J. Cabana, N.P. Balsara, J. Electrochem. Soc. 160, A1611 (2013)CrossRefGoogle Scholar
  26. J.C. Hemminger, J. Sarrao, G. Crabtree, G. Flemming, M. Ratner, Challenged at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science. U.S. Department of Energy (2015)Google Scholar
  27. M. Hirayama, K. Sakamoto, T. Hiraide, D. Mori, A. Yamadaa, R. Kannoa, N. Sonoyamab, K. Tamura, J. Mizuki. Electrochim. Acta 53, 871 (2007)Google Scholar
  28. Y.-Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.-S. Du, K.W. Chapman, P.J. Chupas, X.-Q. Yang, C.P. Grey, Nat. Mater. 12, 1130 (2013)ADSCrossRefGoogle Scholar
  29. D.M. Itkis, D.A. Semenenko, E.Y. Kataev, A.I. Belova, V.S. Neudachina, A.P. Sirotina, M. Hävecker, D. Teschner, A. Knop-Gericke, P. Dudin, A. Barinov, E.A. Goodilin, Y. Shao-Horn, L.V. Yashina, Nano Lett. 13, 4697 (2013)ADSCrossRefGoogle Scholar
  30. N.K. Karan, M. Balasubramanian, T.T. Fister, A.K. Burrell, P. Du, J. Phys. Chem. C 116, 18132 (2012)CrossRefGoogle Scholar
  31. M. Kavčič, K. Bučar, M. Petric, M. Žitnik, I. Arčon, R. Dominko, A. Vizintin, J. Phys. Chem. C 120, 24568 (2016)CrossRefGoogle Scholar
  32. D. Ketenoglu, G. Spiekermann, M. Harder, E. Oz, C. Koz, M.C. Yagci, E. Yilmaz, Z. Yin, C.J. Sahle, B. Detlefs, H. Yavaş, J. Synchrotron Radiat. 25, 537 (2018)CrossRefGoogle Scholar
  33. B. Key, M. Morcrette, J. Tarascon, C.P. Grey, J. Am. Chem. Soc. 133, 503 (2011)CrossRefGoogle Scholar
  34. M. Lee, J. Hong, J. Lopez, Y. Sun, D. Feng, K. Lim, W.C. Chueh, M.F. Toney, Y. Cui, Z. Bao, Nat. Energy 2, 861 (2017)ADSCrossRefGoogle Scholar
  35. H. Li, N. Zhang, J. Li, J.R. Dahn, J. Electrochem. Soc. 165, A2985 (2018)CrossRefGoogle Scholar
  36. J. Lim, Y. Li, D.H. Alsem, H. So, S.C. Lee, P. Bai, D.A. Cogswell, X. Liu, N. Jin, Y. Yu, N.J. Salmon, D.A. Shapiro, M.Z. Bazant, T. Tyliszczak, W.C. Chueh, Science 353, 566 (2016)ADSCrossRefGoogle Scholar
  37. H. Liu, P.K. Allan, O.J. Borkiewicz, C. Kurtz, C.P. Grey, K.W. Chapman, P.J. Chupas, J. Appl. Crystallogr. 49, 1665 (2016)CrossRefGoogle Scholar
  38. Z. Liu, K. Han, Y. Chen, K. Chen-Wiegart, J. Wang, H.H. Kung, J. Wang, S.A. Barnett, K.T. Faber, J. Power Sources 360, 460 (2017)ADSCrossRefGoogle Scholar
  39. Y.C. Lu, E.J. Crumlin, G.M. Veith, J.R. Harding, E. Mutoro, L. Baggetto, N.J. Dudney, Z. Liu, Y. Shao-Horn, Sci. Rep. 2, 1 (2012)Google Scholar
  40. J. Miao, R.L. Sandberg, C. Song, IEEE J. Sel. Top. Quantum Electron. 18, 399 (2012)ADSCrossRefGoogle Scholar
  41. E.C. Miller, R.M. Kasse, K.N. Heath, B.R. Perdue, M.F. Toney, J. Electrochem. Soc. 165, A6043 (2018)CrossRefGoogle Scholar
  42. Y. Nakayama, R. Matsumoto, K. Kumagae, D. Mori, Y. Mizuno, S. Hosoi, K. Kamiguchi, N. Koshitani, Y. Inaba, Y. Kudo, H. Kawasaki, E.C. Miller, J.N. Weker, M.F. Toney, Chem. Mat. 30, 6318 (2018)Google Scholar
  43. J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J.C. Andrews, Y. Cui, M.F. Toney, J. Am. Chem. Soc. 134, 6337 (2012)CrossRefGoogle Scholar
  44. T.A. Pascal, K.H. Wujcik, J. Velasco-Velez, C. Wu, A.A. Teran, M. Kapilashrami, J. Cabana, J. Guo, M. Salmeron, N. Balsara, D. Prendergast, J. Phys. Chem. Lett. 5, 1547 (2014)CrossRefGoogle Scholar
  45. E. Peled, J. Electrochem. Soc. 126, 2047 (1979)CrossRefGoogle Scholar
  46. V. Petkov, A. Timmons, J. Camardese, Y. Ren, J. Phys. Condens. Matter 23, 435003 (2011)ADSCrossRefGoogle Scholar
  47. F. Pfeiffer, Nat. Photonics 12, 9 (2018)ADSCrossRefGoogle Scholar
  48. P. Pietsch, D. Westhoff, J. Feinauer, J. Eller, F. Marone, M. Stampanoni, V. Schmidt, V. Wood, Nat. Commun. 7, 1 (2016)CrossRefGoogle Scholar
  49. L.F.J. Piper, N.F. Quackenbush, S. Sallis, D.O. Scanlon, G.W. Watson, K.W. Nam, X.Q. Yang, K.E. Smith, F. Omenya, N.A. Chernova, M.S. Whittingham, J. Phys. Chem. C 117, 10383 (2013)CrossRefGoogle Scholar
  50. F. Pourpoint, X. Hua, D.S. Middlemiss, P. Adamson, D. Wang, P.G. Bruce, C.P. Grey, Chem. Mater. 24, 2880 (2012)CrossRefGoogle Scholar
  51. M.N. Richard, J. Electrochem. Soc. 144, 554 (1997)CrossRefGoogle Scholar
  52. S. Saito, H. Watanabe, K. Ueno, T. Mandai, S. Seki, S. Tsuzuki, Y. Kameda, K. Dokko, M. Watanabe, Y. Umebayashi, J. Phys. Chem. B 120, 3378 (2016)CrossRefGoogle Scholar
  53. A. Sakdinawat, D. Attwood, Nat. Photonics 4, 840 (2010)ADSCrossRefGoogle Scholar
  54. K.A. See, K.W. Chapman, L. Zhu, K.M. Wiaderek, O.J. Borkiewicz, C.J. Barile, P.J. Chupas, A.A. Gewirth, J. Am. Chem. Soc. 138, 328 (2016)CrossRefGoogle Scholar
  55. D.M. Seo, P.D. Boyle, R.D. Sommer, J.S. Daubert, O. Borodin, W.A. Henderson, J. Phys. Chem. B 118, 13601 (2014)CrossRefGoogle Scholar
  56. A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T.A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, N. Hua, J. Wingert, H. Liu, M. Sprung, A.V. Zozulya, E. Maxey, R. Harder, Y.S. Meng, O.G. Shpyrko, Nat. Energy 3, 641 (2018)ADSCrossRefGoogle Scholar
  57. J. Sottmann, R. Homs-Regojo, D.S. Wragg, H. Fjellvåg, S. Margadonna, H. Emerich, J. Appl. Crystallogr. 49, 1 (2016)CrossRefGoogle Scholar
  58. D.A. Stevens, J.R. Dahn, J. Electrochem. Soc. 148, A803 (2001)CrossRefGoogle Scholar
  59. G.M. Su, I.A. Cordova, M.A. Brady, D. Prendergast, C. Wang, Polymer (Guildf). 105, 342 (2016)CrossRefGoogle Scholar
  60. K. Sun, C. Zhao, C.-H. Lin, E. Stavitski, G.J. Williams, J. Bai, E. Dooryhee, K. Attenkofer, J. Thieme, Y.K. Chen-Wiegart, H. Gan, Sci. Rep. 7, 12976 (2017)ADSCrossRefGoogle Scholar
  61. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science (80-) 350, 938 (2015)CrossRefGoogle Scholar
  62. C. Tan, S.R. Daemi, O.O. Taiwo, T.M.M. Heenan, D.J.L. Brett, P.R. Shearing, Materials (Basel) 11, 2157 (2018)ADSCrossRefGoogle Scholar
  63. S. Tardif, E. Pavlenko, L. Quazuguel, M. Boniface, M. Maréchal, J.-S. Micha, L. Gonon, V. Mareau, G. Gebel, P. Bayle-Guillemaud, F. Rieutord, S. Lyonnard, ACS Nano 11, 11306 (2017)CrossRefGoogle Scholar
  64. F. Tariq, S. Menkin, V. Yufit, J. Gelb, P.R. Shearing, E. Peled, D. Golodnitsky, M. Kishimoto, N.P. Brandon, J. Power Sources 248, 1014 (2013)CrossRefGoogle Scholar
  65. T.R. Thurston, N.M. Jisrawi, S. Mukerjee, X.Q. Yang, J. McBreen, M.L. Daroux, X.K. Xing, Appl. Phys. Lett. 69, 194 (1996)ADSCrossRefGoogle Scholar
  66. United States Department of Energy, JCESR Website (2018)Google Scholar
  67. S. Waluś, C. Barchasz, J.-F. Colin, J.-F. Martin, E. Elkaïm, J.-C. Leprêtre, F. Alloin, Chem. Commun. 49, 7899 (2013)CrossRefGoogle Scholar
  68. D. Wang, L. Zuin, J. Power Sources 337, 100 (2017)ADSCrossRefGoogle Scholar
  69. J. Wang, C. Eng, Y.C.K. Chen-Wiegart, J. Wang, Nat. Commun. 6, 1 (2015)ADSGoogle Scholar
  70. J.N. Weker, A.M. Wise, K. Lim, B. Shyam, M.F. Toney, Electrochim. Acta 247, 977 (2017)CrossRefGoogle Scholar
  71. P. Whitfield, I. Davidson, L. Cranswick, I. Swainson, P. Stephens, Solid State Ionics 176, 463 (2005)CrossRefGoogle Scholar
  72. K.H. Wujcik, J. Velasco-Velez, C.H. Wu, T. Pascal, A.A. Teran, M.A. Marcus, J. Cabana, J. Guo, D. Prendergast, M. Salmeron, N.P. Balsara, J. Electrochem. Soc. 161, A1100 (2014)CrossRefGoogle Scholar
  73. J. Xu, M. Sun, R. Qiao, S.E. Renfrew, L. Ma, T. Wu, S. Hwang, D. Nordlund, D. Su, K. Amine, J. Lu, B.D. McCloskey, W. Yang, W. Tong, Nat. Commun. 9, 1 (2018)CrossRefGoogle Scholar
  74. W. Yang, X. Liu, R. Qiao, P. Olalde-Velasco, J.D. Spear, L. Roseguo, J.X. Pepper, Y. De Chuang, J.D. Denlinger, Z. Hussain, J. Electron Spectros. Relat. Phenomena 190, 64 (2013)CrossRefGoogle Scholar
  75. W.S. Yoon, K.B. Kim, M.G. Kim, M.K. Lee, H.J. Shin, J.M. Lee, J.S. Lee, C.H. Yo, J. Phys. Chem. B 106, 2526 (2002)CrossRefGoogle Scholar
  76. N.P. Young, D. Devaux, R. Khurana, G.W. Coates, N.P. Balsara, Solid State Ionics 263, 87 (2014)CrossRefGoogle Scholar
  77. Y. Yu, A. Baskin, C. Valero-Vidal, N.T. Hahn, Q. Liu, K.R. Zavadil, B.W. Eichhorn, D. Prendergast, E.J. Crumlin, Chem. Mater. 29, 8504 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SLAC National Accelerator LaboratoryStanford Synchrotron Radiation LightsourceMenlo ParkUSA

Personalised recommendations