Advertisement

Accelerator-Based THz Radiation Sources

  • Anke-Susanne Müller
  • Markus Schwarz
Living reference work entry

Abstract

Radiation from the Terahertz (THz) (also called far-infrared) region of the electromagnetic spectrum is extensively used for many different purposes. This chapter gives an introduction to the generation mechanisms of THz radiation. The underlying physics processes will be discussed with emphasis on the properties of coherent radiation and the corresponding accelerator and detection techniques.

Keywords

Accelerator, THz radiation, Coherence, Edge radiation, Transition radiation, Smith-Purcell radiation, Synchrotron radiation, Short-bunch mode, THz burst, THz detection, Femto-slicing 

Notes

Acknowledgements

We would like to thank M. Brosi, N. Hiller, Y-L. Mathis, J. Raasch, M.  Siegel, and J.L. Steinmann from KIT and C. Mai, S. Khan, and P. Ungelenk from DELTA for contributing figures and input for figures. It is a pleasure to thank M. Schmelling for his careful reading of the manuscript and his many helpful comments. Finally, we want to acknowledge our colleagues from the AKNA-THz and ANKA-IR groups and in particular E. Bründermann for countless insightful discussions on accelerator physics and coherent radiation.

References

  1. M. Abo-Bakr, et al., in Proceedings EPAC, Vienna, 2000, p. 720Google Scholar
  2. D. Arena, Y. Shen, T. Watanabe, C.C. Kao, J. Murphy, X.J. Wang, G. Carr, in Joint 32nd International Conference on Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics (IRMMW-THz), 2007, Cardiff, pp. 827–829Google Scholar
  3. V. Asgekar, G. Geloni, V. Kocharyan, N. Stojanovic, P. Michel, M. Gensch, Infrared Phys. Technol. 64(0), 26 (2014). DOIhttp://dx.doi.org/10.1016/j.infrared.2014.01.009. http://www.sciencedirect.com/science/article/pii/S1350449514000103
  4. S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, Y. Takashima, Nat. Phys. 4(5), 390 (2008)CrossRefGoogle Scholar
  5. R.A. Bosch, Il Nuovo Cimento 20 D(4), 483 (1998)Google Scholar
  6. R. Bosch, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 431(1–2), 320 (1999). DOI10.1016/S0168-9002(99)00267-3, http://www.sciencedirect.com/science/article/pii/S0168900299002673
  7. E. Bründermann, H. Heinz-Wilhelm, M.F. Kimmitt, Terahertz Techniques. Springer Series in Optical Sciences (Springer, Berlin/Heidelberg, 2012)Google Scholar
  8. M. Brosi, M. Caselle, E. Hertle, A. Kopmann, A.S. Müller, P. Schönfeldt, M. Schwarz, J. Steinmann, M. Weber, in Proceedings of IPAC, Richmond, 2015, p. MOPHA042Google Scholar
  9. J.M. Byrd, M.C. Martin, F. Sannibale, CERN Courier 45(7), 39 (2005)Google Scholar
  10. J.M. Byrd, Z. Hao, M.C. Martin, D.S. Robin, F. Sannibale, R.W. Schoenlein, A.A. Zholents, M.S. Zolotorev, Phys. Rev. Lett. 96(16), 164801 (2006). DOI10.1103/PhysRevLett.96.164801Google Scholar
  11. G.L. Carr, et al., in Proceedings PAC’99, New York, 1999Google Scholar
  12. S. Casalbuoni, B. Schmidt, P. Schmüser, V. Arsov, S. Wesch, Phys. Rev. ST Accel. Beams 12(3), 030705 (2009). DOI10.1103/PhysRevSTAB.12.030705Google Scholar
  13. M. Caselle, M. Balzer, S. Chilingaryan, M. Hofherr, V. Judin, A. Kopmann, N.J. Smale, P. Thoma, S. Wuensch, A.S. Müller, M. Siegel, M. Weber, J. Instrum. 9(01), C01024 (2014). http://stacks.iop.org/1748-0221/9/i=01/a=C01024
  14. O. Chubar, P. Elleaume, in Proceedings of EPAC’98, Stockholm, 1998, p. 1177Google Scholar
  15. J.A. Clarke, The Science and Technology of Undulators and Wigglers (Oxford University Press, Oxford, 2004)CrossRefGoogle Scholar
  16. D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman, T.I. Smith, Phys. Rev. Lett. 38(16), 892 (1977). DOI10.1103/PhysRevLett.38.892Google Scholar
  17. G. Doucas, J.H. Mulvey, M. Omori, J. Walsh, M.F. Kimmitt, Phys. Rev. Lett. 69, 1761 (1992). DOI10.1103/PhysRevLett.69.1761Google Scholar
  18. C. Evain et al., Europhys. Lett. 98, 40006 (2009)CrossRefADSGoogle Scholar
  19. E. Forest, Beam Dynamics—A New Attitude and Framework (Harwood Academic Publisher, Amsterdam, 1998)zbMATHGoogle Scholar
  20. I.M. Frank, Izv. Akad. Nauk SSSR, Ser. Fiz. 6, 3 (1942)Google Scholar
  21. G. Geloni, V. Kocharyan, E. Saldin, E. Schneidmiller, M. Yurkov, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detectors Assoc. Equip. 605(3), 409 (2009a). DOIhttp://dx.doi.org/10.1016/j.nima.2009.03.240, http://www.sciencedirect.com/science/article/pii/S0168900209007372
  22. G. Geloni, V. Kocharyan, E. Saldin, E. Schneidmiller, M. Yurkov, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detectors Assoc. Equip. 607(2), 470 (2009b). DOIhttp://dx.doi.org/10.1016/j.nima.2009.04.039, http://www.sciencedirect.com/science/article/pii/S0168900209008912
  23. M. Gensch, et al., in Proceedings of IPAC 2014 (Dresden, Germany, 2014), p. TUZA02Google Scholar
  24. V.L. Ginzburg, Phys. Scr. 1982(T2A), 182 (1982). http://stacks.iop.org/1402-4896/1982/i=T2A/a=024
  25. N. Hiller et al., in Proceedings of IPAC 2013, Shanghai, 2013, p. MOPME014Google Scholar
  26. N. Hiller, et al., in Proceedings of IBIC, Monterey, 2014Google Scholar
  27. K. Holldack, T. Kachel, S. Khan, R. Mitzner, T. Quast, Phys. Rev. ST Accel. Beams 8(4), 040704 (2005). DOI10.1103/PhysRevSTAB.8.040704Google Scholar
  28. ISO 20473:2007, ISO Geneva (2007)Google Scholar
  29. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)zbMATHGoogle Scholar
  30. V. Judin, S. Hillenbrand, N. Hiller, E. Huttel, M. Klein, S. Marsching, A.S. Müller, N.J. Smale, K. Sonnad, P. Tavares, in Proceedings of IPAC, Kyoto, 2010, pp. 2526–2528Google Scholar
  31. S. Khan, J. Mod. Optic. 55(21), 3469 (2008)zbMATHCrossRefGoogle Scholar
  32. S. Khan, et al., Synchrotron Radiat. News 24(5), 18 (2011)CrossRefGoogle Scholar
  33. K.J. Kim, K.T. McDonald, G.V. Stupakov, M.S. Zolotorev, Phys. Rev. Lett. 84, 3210 (2000). DOI10.1103/PhysRevLett.84.3210, http://link.aps.org/doi/10.1103/PhysRevLett.84.3210
  34. R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M.v. Hartrott, K. Holldack, G. Wüstefeld, Phys. Rev. ST Accel. Beams 11(11), 110701 (2008). DOI10.1103/PhysRevSTAB.11.110701Google Scholar
  35. G. Kube, H. Backe, H. Euteneuer, A. Grendel, F. Hagenbuck, H. Hartmann, K.H. Kaiser, W. Lauth, H. Schöpe, G. Wagner, T. Walcher, M. Kretzschmar, Phys. Rev. E 65(5), 056501 (2002). DOI10.1103/PhysRevE.65.056501Google Scholar
  36. R. Lai, A.J. Sievers, Nucl. Instrum. Meth. A 397, 221 (1997)CrossRefADSGoogle Scholar
  37. C. Mai, F.H. Bahnsen, M. Bolsinger, S. Hilbrich, M. Höner, M. Huck, S. Khan, A.M. auf der Heide, R. Molo, H. Rast, G. Shayeganrad, P. Ungelenk, H. Huck, M. Brosi, B. Kehrer, A.S. Müller, M.J. Nasse, P. Schönfeldt, P. Schütze, S. Walther, in Proceedings of IPAC, Richmond, 2015, p. MOPHA023Google Scholar
  38. Y.L. Mathis, B. Gasharova, D.A. Moss, in WIRMS, Rathen, 2005Google Scholar
  39. F. Miyahara, F. Hinode, M. Kawai, T. Muto, K. Nanbu, H. Oohara, Y. Tanaka, H. Hama, in Proceedings of IPAC, Kyoto, 2010, pp. 4509–4511Google Scholar
  40. P. Muggli, V. Yakimenko, M. Babzien, E. Kallos, K.P. Kusche, Phys. Rev. Lett. 101(5), 054801 (2008). DOI10.1103/PhysRevLett.101.054801Google Scholar
  41. A.S. Müller, Reviews of Accelerator Science and Technology 3(1), 165 (2010). DOI10.1142/S1793626810000427, http://www.worldscientific.com/doi/abs/10.1142/S1793626810000427
  42. A.S. Müller, I. Birkel, M. Fitterer, S. Hillenbrand, N. Hiller, A. Hofmann, E. Huttel, K. Il’in, V. Judin, M. Klein, S. Marsching, Y.L. Mathis, P. Rieger, M. Siegel, N.J. Smale, K. Sonnad, P. Tavares, A.D. Semenov, H.W. Hübers, in Proceedings of IPAC, Kyoto, 2010, pp. 2529–2531Google Scholar
  43. A.S. Müller, et al., in ICFA Beam Dynamics Newsletter No. 57, 2012, pp. 154–165Google Scholar
  44. J. Murphy, S. Krinsky, R. Gluckstern, Part. Accel. 57, 9 (1997)Google Scholar
  45. M.J. Nasse, M. Schuh, S. Naknaimueang, M. Schwarz, A. Plech, Y.L. Mathis, R. Rossmanith, P. Wesolowski, E. Huttel, M. Schmelling, A.S. Müller, Rev. Sci. Instrum. 84(2), 022705 (2013). DOIhttp://dx.doi.org/10.1063/1.4790431, http://scitation.aip.org/content/aip/journal/rsi/84/2/10.1063/1.4790431
  46. A. Nause, E. Dyunin, R. Ianconescu, A. Gover, J. Opt. Soc. Am. B 31(10), 2438 (2014). DOI10.1364/JOSAB.31.002438. http://josab.osa.org/abstract.cfm?URI=josab-31-10-2438
  47. C. Prokop, P. Piot, M.C. Lin, P. Stoltz, Appl. Phys. Lett. 96(15), 151502 (2010). DOI10.1063/1.3386543Google Scholar
  48. J. Raasch, A. Kuzmin, P. Thoma, K. Il’in, M. Arndt, S. Wuensch, M. Siegel, J. Steinmann, A.S. Müller, E. Roussel, C. Evain, C. Szwaj, S. Bielawski, T. Konomi, S.I. Kimura, M. Katoh, M. Hosaka, N. Yamamoto, H. Zen, K. Iida, B. Holzapfel, IEEE Trans. Appl. Supercond. 25(3), 2300106 (2015)CrossRefGoogle Scholar
  49. P. Rieger, Y.L. Mathis, B. Gasharova, D. Moss, Vibrational Spectroscopy 75(0), 196 (2014). DOIhttp://dx.doi.org/10.1016/j.vibspec.2014.06.005, http://www.sciencedirect.com/science/article/pii/S0924203114001040
  50. M. Ries, J. Feikes, P. Schmid, G. Wüstefeld, in Proceedings of IPAC, San Sebastian, 2011, pp. 945–947Google Scholar
  51. D.S. Robin, et al., in Proceedings of EPAC 2008, Genoa, 2008, p. WEPC049Google Scholar
  52. E. Roussel, C. Evain, C. Szwaj, S. Bielawski, Phys. Rev. ST Accel. Beams 17, 010701 (2014a). DOI10.1103/PhysRevSTAB.17.010701, http://link.aps.org/doi/10.1103/PhysRevSTAB.17.010701
  53. E. Roussel, C. Evain, C. Szwaj, S. Bielawski, J. Raasch, P. Thoma, A. Scheuring, M. Hofherr, K. Ilin, S. Wünsch, M. Siegel, M. Hosaka, N. Yamamoto, Y. Takashima, H. Zen, T. Konomi, M. Adachi, S. Kimura, M. Katoh, Phys. Rev. Lett. 113, 094801 (2014b). DOI10.1103/PhysRevLett.113.094801. http://link.aps.org/doi/10.1103/PhysRevLett.113.094801
  54. E. Roussel, C. Evain, M.L. Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.B. Brubach, M.A. Tordeux, J.P. Ricaud, L. Cassinari, M. Labat, M.E. Couprie, P. Roy, arXiv:1410.7048, 2014cGoogle Scholar
  55. E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.B. Brubach, M.A. Tordeux, J.P. Ricaud, L. Cassinari, M. Labat, M.E. Couprie, P. Roy, in Proceedings of SPIE, Advances in X-ray Free-Electron Lasers Instrumentation III, vol. 9512, 2015, p. 95120UGoogle Scholar
  56. M. Schwarz, P. Basler, M. v. Borstel, A.S. Müller, Phys. Rev. ST Accel. Beams 17, 050701 (2014). DOI10.1103/PhysRevSTAB.17.050701, http://link.aps.org/doi/10.1103/PhysRevSTAB.17.050701
  57. S.V. Shchelkunov, T.C. Marshall, J.L. Hirshfield, M.A. LaPointe, Phys. Rev. ST Accel. Beams 8(6), 062801 (2005). DOI10.1103/PhysRevSTAB.8.062801Google Scholar
  58. Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T.and Matsuyama, K. Kobayashi, Y. Fujita, Phys. Rev. E 57(1), 1061 (1998). DOI10.1103/PhysRevE.57.1061Google Scholar
  59. M. Shimada, M. Katoh, S. Kimura, A. Mochihashi, M. Hosaka, Y. Takashima, T. Hara, T. Takahashi, Jpn. J. Appl. Phys. 46(12), 7939 (2007). DOI10.1143/JJAP.46.7939, http://jjap.ipap.jp/link?JJAP/46/7939/
  60. A.G. Shkvarunets, R. Fiorito, F. Müller, V. Schlott, in Proceedings of DIPAC, Venice, 2007, p. WEPC21Google Scholar
  61. Y. Shoji, Infrared Phys. Technol. 51, 367 (2008)CrossRefADSGoogle Scholar
  62. S.J. Smith, E.M. Purcell, Phys. Rev. 92(4), 1069 (1953). DOI10.1103/PhysRev.92.1069Google Scholar
  63. J. Steinmann, et al., in Proceedings of IPAC, Richmond, 2015, p. TUPWA043Google Scholar
  64. A.G. Stepanov, L. Bonacina, S.V. Chekalin, J.P. Wolf, Opt. Lett. 33(21), 2497 (2008). DOI10.1364/OL.33.002497, http://ol.osa.org/abstract.cfm?URI=ol-33-21-2497
  65. G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009). DOI10.1103/PhysRevLett.102.074801, http://link.aps.org/doi/10.1103/PhysRevLett.102.074801
  66. G. Stupakov, S. Heifets, Phys. Rev. ST Accel. Beams 5(5), 054402 (2002). DOI10.1103/PhysRevSTAB.5.054402Google Scholar
  67. D. Sütterlin, D. Erni, M. Dehler, H. Jäckel, H. Sigg, V. Schlott, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 264(2), 361 (2007). DOIhttp://dx.doi.org/10.1016/j.nimb.2007.08.092, http://www.sciencedirect.com/science/article/pii/S0168583X07015091
  68. T. Takahashi, Y. Shibata, K. Ishi, M. Ikezawa, M. Oyamada, Y. Kondo, Phys. Rev. E 62(6), 8606 (2000). DOI10.1103/PhysRevE.62.8606Google Scholar
  69. B. Terzic, K. Godunov, D. Arumugam, M. Zubair, in Proceedings of IPAC, Richmond, 2015, p. MOBC2Google Scholar
  70. P. Thoma, A. Scheuring, M. Hofherr, S. Wünsch, K. Il’in, N. Smale, V. Judin, N. Hiller, A.S. Müller, A. Semenov, H.W. Hübers, M. Siegel, Appl. Phys. Lett. 101(142601) (2012). http://dx.doi.org/10.1063/1.4756905
  71. M. Venturini, R. Warnock, Phys. Rev. Lett. 89, 224802 (2002). DOI10.1103/PhysRevLett.89.224802, http://link.aps.org/doi/10.1103/PhysRevLett.89.224802
  72. H. Wiedemann, Particle Accelerator Physics, 3rd edn. (Springer, Berlin/Heidelberg, 2007)Google Scholar
  73. I. Wilke, A.M. MacLeod, W.A. Gillespie, G. Berden, G.M.H. Knippels, A.F.G. van der Meer, Phys. Rev. Lett. 88, 124801 (2002). DOI10.1103/PhysRevLett.88.124801, http://link.aps.org/doi/10.1103/PhysRevLett.88.124801
  74. G. Wüstefeld, in Proceedings of EPAC, Genoa, 2008, pp. 26–30Google Scholar
  75. G. Wüstefeld, A. Jankowiak, J. Knobloch, M. Ries, in Proceedings of IPAC, San Sebastian, 2011, pp. 2936–2938Google Scholar
  76. D. Xiang, G. Stupakov, Phys. Rev. ST Accel. Beams 12(8), 080701 (2009). DOI10.1103/PhysRevSTAB.12.080701Google Scholar
  77. X. Yan, A. MacLeod, W. Gillespie, G. Knippels, D. Oepts, et al., Phys. Rev. Lett. 85, 3404 (2000). DOI10.1103/PhysRevLett.85.3404Google Scholar
  78. A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, Nucl. Instrum. Methods A 425(1-2), 385 (1999). DOI10.1016/S0168-9002(98)01372-2, http://www.sciencedirect.com/science/article/B6TJM-3WWDNJC-15/2/1b4ae54af950e0dc041cc424e95127c2
  79. B.W. Zotter, S.A. Kheifets, Impedances and Wakes in High-Energy Particle Accelerators (World Scientific, Singapore, 1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ANKA Synchrotronstrahlungsquelle Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Laboratory for Applications of Synchrotron RadiationKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations