Advertisement

High-Resolution Inelastic X-Ray Scattering I: Context, Spectrometers, Samples, and Superconductors

  • Alfred Q. R. BaronEmail author
Living reference work entry

Latest version View entry history

Abstract

This paper reviews nonresonant, meV-resolution inelastic x-ray scattering (IXS), as applied to the measurement of atomic dynamics of crystalline materials. It, in conjunction with a companion paper on scattering theory and calculations (Part II, also in this handbook), is designed to be an introductory, though in-depth, look at the field for those who may be interested in performing IXS experiments, or in understanding the operation of IXS spectrometers, or those desiring a practical introduction to harmonic phonons in crystals at finite momentum transfers. The treatment of most topics begins from ground level, with an emphasis on practical issues, as they have occurred to the author in two decades introducing meV-resolved IXS in Japan, including designing and building two IXS beamlines, spectrometers, and associated instrumentation, performing experiments, and helping and teaching other scientists. After a short introduction to the broader field of IXS, this paper, Part I, discusses the relative merits of IXS as compared to other methods of investigating atomic dynamics, especially inelastic neutron scattering (INS). A very brief overview of spectrometer operation and the types of spectra observed is also given. The paper then focuses on the main issues relevant for spectrometer design, including an introduction to relevant formulas from dynamical diffraction and an in-depth discussion of the how various design issues have been addressed in the different types of operating spectrometers, including spectrometers using spherically figured analyzers and the relatively new “post-sample collimation” (PSC) systems. Finally, there is a discussion of the types of experiments that have been carried out mentioning of the many of crystalline the samples that have been investigated and detailed discussion of measurements of superconductors and magnetoelastic coupling in iron-pnictide materials.

Abbreviations

CDW

Charge density wave

DAC

Diamond anvil cell

DHO

Damped harmonic oscillator

HRM

High-resolution monochromator

IFC

Interatomic force constant matrix

INS

Inelastic neutron scattering

IUVS

Inelastic ultraviolet spectroscopy

IXS

Inelastic x-ray scattering (in the present paper: specifically meV-resolved nonresonant investigations)

NIS

Nuclear inelastic scattering (also, sometimes, NRVS, or, occasionally, NRIXS, is used instead)

NRIXS

Nonresonant inelastic x-ray scattering (generally with resolution on the 0.01–0.1 eV scale for electronic interactions)

NRS

Nuclear resonant scattering

NRVS

Nuclear resonant vibration spectroscopy (NIS is used in the present paper)

PSC

Post sample collimation

RIXS

Resonant inelastic x-ray scattering

SA

Spherical analyzer

SIXS

Soft (x-ray) inelastic x-ray scattering

TDS

Thermal diffuse scattering

XAFS

X-ray absorption fine structure

XPCS

X-ray photon correlation spectroscopy

Notes

Acknowledgments

I am grateful to several scientists who kindly read and offered comments on preliminary versions of this paper including Sunil Sinha, Rolf Heid, Aleksandr Chumakov, Hiroshi Fukui, Kazuyoshi Yamada, and Yuri Shvyd’ko. I thank the scientists who kindly shared some of the details of the beamlines with me, including Ahmet Alatas, Ayman Said, Alexey Bosak, Claudio Masciovecchio, and Yong Cai. I also thank people for their useful relevant comments including F. Weber and M. Sutton. The paper is based on work carried out at SPring-8. I would like to express my deep appreciation to the many people in all parts of SPring-8 that I have had the pleasure of working with over the last two decades, as well as collaborators outside SPring-8. This work is based on experience gained during many proposals including 2001B 0203 0481 0482 0508 0575 3607, 2002A 0182 0279 0280 0520 0537 0559 0560 0561 0562 0627, 2002B 0151 0178 0179 0180 0243 0248 0249 0287 0382 0383 0529 0539 0565 0593 0594 0632 0668 0709, 2003A 0022 0081 0153 0175 0235 0284 0357 0555 0637 0638 0683 0716, 2003B 0019 0132 0206 0248 0359 0397 0574 0693 0743 0744 0745 0755 0766, 2004A 0322 0439 0510 0519 0577 0582 0590 0634, 2004B 0003 0070 0204 0343 0491 0597 0632 0635 0722 0730 0736 0752, 2005A 0039 0061 0146 0147 0148 0157 0330 0369 0428 0475 0567 0596 0616 0712 0751, 2005B 0082 0093 0124 0253 0266 0295 0346 0441 0443 0484 0603 0623 0650 0731 0736, 2006A 1023 1039 1057 1081 1181 1226 1242 1272 1273 1291 1345 1376 1379 1417 1430 1453 1467 1502, 2006B 1053 1082 1089 1146 1186 1204 1235 1259 1299 1311 1337 1352 1356 1405 1417, 2007A 1109 1118 1125 1125 1222 1234 1279 1281 1301 1374 1436 1441 1473 1505 1507 1523 1539 1561 1612 1647 1671, 2007B 1053 1062 1099 1114 1118 1197 1198 1215 1322 1328 1336 1343 1375 1444 1538 1614 1640 1662, 2008A 1058 1064 1125 1140 1204 1205 1394 1456 1491 1522 1568 1582 1584 1587 1588 1626, 2008B 1381 1403 1473 1178 1108 1326 1584 1240 1144 1169 1491 1634, 2009A 1054 1093 1146 1189 1203 1224 1274 1290 1299 1358 1379 1436 1451 1492 1506 1548, 2009B 1074 1114 1126 1150 1165 1286 1323 1423 1439 1548 1555 1584 1609 1619, 2010B 1108 1112 1177 1185 1206 1353 1354 1392 1410 1453 1497 15271538 1575 1579 1593, 2011A 1051 1075 1104 1117 1136 1154 1180 1256 1271 1300 1304 1366 1373 1452 1502, 2011B 1122 1213 1215 1314 1332 1336 1353 1388 1406 1408 1423 1425 1536 1590, 2012A 1102 1115 1122 1156 1219 1237 1243 1250 1255 1354 1362 1390 1406 1417 1452 1506 1583, 2012B 1080 1125 1159 1196 1226 1236 1277 1283 1343 1356 1358 1364 1439 1577 1596 1658 , 2014A 1026 1059 1076 1086 1089 1100 1106 1122 1131 1154 1207 1231 1235 1236 1240 1346 1368 1378 1385 1434 1678 1687 1884 2014B 1052 1066 1068 1130 1143 1159 1182 1222 1269 1271 1290 1365 1381 1465 1381 1465 1536 1545 1739 1760 1761 1175 1192.

Supplementary material

Movie 1

Movie of a longitudinal acoustic (LA) mode in MgB2near to Γ. The view is looking down the c-axis, small gray spheres are B atoms arranged in a hexagonal lattice, while yellow spheres are represent Mg atoms (MP4 62 kb)

Movie 2

Movie of a transverse acoustic (TA) mode in MgB2near to Γ (see notes on Movie 1). Note the motion is transverse to the direction of correlation (MP4 62 kb)

Movie 3

Movie of a longitudinal optic (LO) mode in MgB2near to Γ (see notes on Movie 1). Note the out-of-phase (antiphase) motion of the atoms (MP4 51 kb)

Movie 4

Movie of a transverse optic (TO) mode in MgB2near to Γ (see notes on Movie 1). Note the out-of-phase (antiphase) motion of the atoms (MP4 65 kb)

Movie 5

Movie of the (low energy) LA mode near to Γ in CaAlSi. The view is perpendicular to the c-axis, with the plane of Ca atoms (white) alternating with the Al-Si planes (blue and red, respectively). Note all motions are in phase (MP4 43 kb)

Movie 6

Movie of the (high energy) LO mode near to Γ in CaAlSi. Same view and colors as for Movie 5. Note the antiphase motion of the adjacent Al and Si. (MP4 37 kb)

Movie 7

Movie of the low-energy mode near to zone boundary (0 0 0.5) in CaAlSi, which, by following the dispersion from Γ, is the acoustic mode. Same view and colors as for Movie 5. Note the antiphase motion of the adjacent Al and Si (MP4 31 kb)

Movie 8

Movie of the high-energy mode near to zone boundary (0 0 0.5) in CaAlSi, which, by following the dispersion from Γ, is the optic mode. Same view and colors as for Movie 5. Note the inphase motion of the adjacent Al and Si (MP4 26 kb)

Movie 9

Movie of the low-energy mode near to the anti-crossing at (0 0 0.21) in CaAlSi, which, by following the dispersion from Γ, is the acoustic mode. Same view and colors as for Movie 5. Note the polarization mixing (MP4 31 kb)

Movie 10

Movie of the high-energy mode near to the anti-crossing at (0 0 0.21) in CaAlSi, which, by following the dispersion from Γ, is the optic mode. Same view and colors as for Movie 5. Note the polarization mixing (MP4 35 kb)

Movie 11

Movie of a Fe-As optical mode in PrFeAsO. The lack of reflection symmetry about the Fe plane leads to elliptical atomic motions (MP4 20 kb)

Movie 12

Movie of one of the bond-stretching modes in YBa2Cu3O7near to Γ. Cu atoms are red, O white, Y yellow, Ba blue. The c-axis is vertical (MP4 48 kb)

Movie 13

Movie of one of the buckling modes in YBa2Cu3O7near to Γ. (See notes on Movie 12) (MP4 23 kb)

References

  1. D.L. Abernathy, M.B. Stone, M.J. Loguillo, M.S. Lucas, O. Delaire, X. Tang, J.Y.Y. Lin, B. Fultz, Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source. Rev. Sci. Instrum. 83, 15114 (2012)ADSCrossRefGoogle Scholar
  2. R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides. Phys. Rev. B. 91, 224513 (2015). https://doi.org/10.1103/PhysRevB.91.224513ADSCrossRefGoogle Scholar
  3. A. Alatas, A. Said, H. Sinn, G. Bortel, M. Hu, J. Zhao, C. Burns, E. Burkel, E. Alp, Atomic form-factor measurements in the low-momentum transfer region for Li, Be, and Al by inelastic x-ray scattering. Phys. Rev. B. 77, 64301 (2008). https://doi.org/10.1103/PhysRevB.77.064301ADSCrossRefGoogle Scholar
  4. A. Alatas, B.M. Leu, J. Zhao, H. Yavaş, T.S. Toellner, E.E. Alp, Improved focusing capability for inelastic X-ray spectrometer at 3-ID of the APS: a combination of toroidal and Kirkpatrick-Baez (KB) mirrors. Nuc. Inst. Meth. A 649, 166–168 (2011). https://doi.org/10.1016/j.nima.2010.11.068. http://www.sciencedirect.com/science/article/pii/S0168900210025593ADSCrossRefGoogle Scholar
  5. P.B. Allen, Neutron spectroscopy of superconducors. Phys. Rev. B. 6, 2577 (1972)ADSCrossRefGoogle Scholar
  6. P.B. Allen, Phonons and the superconducting transition temperature, in Dynamical Properties of Solids, ed. by G. K. Horton, A. A. Maradudin, (North Holland, Amsterdam, 1980), pp. 96–196Google Scholar
  7. P.B. Allen, M.L. Cohen, Supercondcutivity and phonon softening. Phys. Rev. Lett. 29, 1593 (1972)ADSCrossRefGoogle Scholar
  8. P.B. Allen, R.C. Dynes, Superconductivity and phonon softening: II. Lead alloys. Phys. Rev. B. 11, 1895 (1975a)ADSCrossRefGoogle Scholar
  9. P.B. Allen, R.C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B. 12, 905 (1975b)ADSCrossRefGoogle Scholar
  10. P.B. Allen, B. Mitrovic, Theory of superconducting Tc. Solid State Phys. 37, 1–92 (1982)Google Scholar
  11. P.B. Allen, R. Silberglitt, Some effects of phonon dynamics on electron lifetime, mass renormalization, and sueprconducting transition temperature. Phys. Rev. B. 9, 4733 (1974)ADSCrossRefGoogle Scholar
  12. P.B. Allen, V.N. Kostur, N. Takesue, G. Shirane, Neutron-scattering profile of Q>0 phonons in BCS superconductors. Phys. Rev. B. 56, 5552–5558 (1997). https://doi.org/10.1103/PhysRevB.56.5552ADSCrossRefGoogle Scholar
  13. L.J.P. Ament, J. van den Brink, Determining the electron-phonon coupling strength from resonant inelastic X-ray scattering at transition metal L-edges. Europhys. Lett. 95, 27008 (2011). http://stacks.iop.org/0295-5075/95/i=2/a=27008ADSCrossRefGoogle Scholar
  14. L.J.P. Ament, M. van Veenendaal, T.P. Devereaux, J.P. Hill, J. van den Brink, Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011). https://doi.org/10.1103/RevModPhys.83.705ADSCrossRefGoogle Scholar
  15. D. Antonangeli, M. Krisch, G. Fiquet, D.L. Farber, C.M. Aracne, J. Badro, F. Occelli, H. Requardt, Elasticity of cobalt at high pressure studied by inelastic X-ray scattering. Phys. Rev. Lett. 93, 215504–215505 (2004a). https://doi.org/10.1103/PhysRevLett.93.215505ADSCrossRefGoogle Scholar
  16. D. Antonangeli, F. Occelli, H. Requardt, J. Badro, G. Fiquet, M. Krisch, Elastic anisotropy in textured hcp-iron to 112 GPa from sound wave propagation measurements. Earth Planet. Sci. Lett. 225, 243–251 (2004b). https://doi.org/10.1016/j.epsl.2004.06.004ADSCrossRefGoogle Scholar
  17. D. Antonangeli, M. Krisch, G. Fiquet, J. Badro, D.L. Farber, A. Bossak, S. Merkel, Aggregate and single-crystalline elasticity of hcp cobalt at high pressure. Phys. Rev. B. 72, 134303–134307 (2005). https://doi.org/10.1103/PhysRevB.72.134303ADSCrossRefGoogle Scholar
  18. D. Antonangeli, M. Krisch, D.L. Farber, D.G. Ruddle, G. Fiquet, Elasticity of hexagonal-closed-packed cobalt at high pressure and temperature: a quasiharmonic case. Phys. Rev. Lett. 100, 85501 (2008). https://doi.org/10.1103/PhysRevLett.100.085501ADSCrossRefGoogle Scholar
  19. D. Antonangeli, D.L. Farber, A.H. Said, L.R. Benedetti, C.M. Aracne, A. Landa, P. Söderlind, J.E. Klepeis, Shear softening in tantalum at megabar pressures. Phys. Rev. B. 82, 132101 (2010). https://doi.org/10.1103/PhysRevB.82.132101ADSCrossRefGoogle Scholar
  20. D. Antonangeli, J. Siebert, C.M. Aracne, D.L. Farber, A. Bosak, M. Hoesch, M. Krisch, F.J. Ryerson, G. Fiquet, J. Badro, Spin crossover in Ferropericlase at high pressure: a seismologically transparent transition? Science 331, 64–67 (2011). http://www.sciencemag.org/content/331/6013/64.abstractADSCrossRefGoogle Scholar
  21. A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University Press, Oxford, 2003).http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198528920.001.0001/acprof-9780198528920
  22. J.D. Axe, G. Shirane, Inelastic neutron scatterin study of acoustic phonons in Nb3Sn. Phys. Rev. B. 8, 1965 (1973)ADSCrossRefGoogle Scholar
  23. P. Aynajian, T. Keller, L. Boeri, S.M. Shapiro, K. Habicht, B. Keimer, Energy gaps and Kohn anomalies in elemental superconductors. Science 319(80), 1509–1512 (2008). http://www.sciencemag.org/content/319/5869/1509ADSCrossRefGoogle Scholar
  24. J. Badro, G. Fiquet, F. Guyot, E. Gregoryanz, F. Occelli, D. Antonangeli, M. D’Astuto, Effect of light elements on the sound velocities in solid iron: implications for the composition of Earth’s core. Earth Planet. Sci. Lett. 254, 233–238 (2007). https://doi.org/10.1016/j.epsl.2006.11.025ADSCrossRefGoogle Scholar
  25. D. Bansal, J.L. Niedziela, A.F. May, A. Said, G. Ehlers, D.L. Abernathy, A. Huq, M. Kirkham, H. Zhou, O. Delaire, Lattice dynamics and thermal transport in multiferroic CuCrO_{2}. Phys. Rev. B. 95, 54306 (2017). https://doi.org/10.1103/PhysRevB.95.054306ADSCrossRefGoogle Scholar
  26. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175 (1957). http://link.aps.org/abstract/PR/v108/p1175ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. A.Q.R. Baron, Open image in new window (Phonons in crystals using inelastic X-ray scattering). Open image in new window (J. Spectrosc. Soc. Jpn – Japanese, ArXiv 0910.5764 English) 54, 205–214 (2009)Google Scholar
  28. A.Q.R. Baron, The RIKEN quantum nanodynamics beamline (BL43LXU): the next generation for inelastic X-ray scattering. SPring-8 Inf. Newsl. 15, 14–19 (2010). http://user.spring8.or.jp/sp8info/?p=3138ADSGoogle Scholar
  29. A.Q.R. Baron, Toward sub-meV, momentum-resolved, inelastic X-ray scattering using a nuclear analyzer. J. Phys. Soc. Jpn. 82, SA029 (2013). http://journals.jps.jp/doi/abs/10.7566/JPSJS.82SA.SA029ADSCrossRefGoogle Scholar
  30. A.Q.R. Baron, High-resolution inelastic X-ray scattering I & II, in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science, ed. by E. Jaeschke, S. Khan, J. R. Schneider, J. B. Hastings, (Springer International Publishing, Cham, 2016), pp. 1643–1757. See also arXiv 1504.01098. https://arxiv.org/abs/1504.01098Google Scholar
  31. A.Q.R. Baron, Y. Tanaka, D. Ishikawa, D. Miwa, M. Yabashi, T. Ishikawa, A compact optical design for Bragg reflections near backscattering. J. Synch. Rad. 8, 1127–1130 (2001a). https://doi.org/10.1107/S0909049501010901CrossRefGoogle Scholar
  32. A.Q.R. Baron, Y. Tanaka, D. Miwa, D. Ishikawa, T. Mochizuki, K. Takeshita, S. Goto, T. Matsushita, T. Ishikawa, Early commissioning of the SPring-8 Beamline for high resolution inelastic X-ray scattering. Nucl. Inst. Methods Phys. Res. A. 467–8, 627–630 (2001b). https://doi.org/10.1016/S0168-9002(01)00431-4ADSCrossRefGoogle Scholar
  33. A.Q.R. Baron, Y. Tanaka, S. Tsutsui, Performance of BL35XU for high resolution inelastic X-ray scattering. SPring-8 Front 2002, 104 (2002).http://www.spring8.or.jp/en/news_publications/publications/research_frontiers/html/RF01B-02A.html
  34. A.Q.R. Baron, H. Uchiyama, Y. Tanaka, S. Tsutsui, D. Ishikawa, S. Lee, R. Heid, K.P. Bohnen, S. Tajima, T. Ishikawa, Kohn anomaly in MgB2 by inelastic X-ray scattering. Phys. Rev. Lett. 92, 197004 (2004). http://link.aps.org/abstract/PRL/v92/e197004ADSCrossRefGoogle Scholar
  35. A.Q.R. Baron, H. Uchiyama, R. Heid, K.P. Bohnen, Y. Tanaka, S. Tsutsui, D. Ishikawa, S. Lee, S. Tajima, Two-phonon contributions to the inelastic x-ray scattering spectra of MgB_2. Phys. Rev. B. 75, 20504–20505 (2007a). https://doi.org/10.1103/PhysRevB.75.020505CrossRefGoogle Scholar
  36. A.Q.R. Baron, H. Uchiyama, S. Tsutsui, Y. Tanaka, D. Ishikawa, J.P. Sutter, S. Lee, S. Tajima, R. Heid, K.-P. Bohnen, Phonon spectra in pure and carbon doped MgB2 by inelastic X-ray scattering. Phys. C Supercond. Its Appl. 456, 83–91 (2007b). https://doi.org/10.1016/j.physc.2007.01.028ADSCrossRefGoogle Scholar
  37. A.Q.R. Baron, J.P. Sutter, S. Tsutsui, H. Uchiyama, T. Masui, S. Tajima, R. Heid, K.-P. Bohnen, First study of the B1g buckling phonon mode in optimally doped, De-twinned, YBa2Cu3O7-δ by inelastic X-ray scattering. J. Phys. Chem. Solids. 69, 3100 (2008). https://doi.org/10.1016/j.jpcs.2008.06.119ADSCrossRefGoogle Scholar
  38. A. Q. R. Baron, D. Ishikawa, H. Fukui, Y. Nakajima, Auxiliary optics for meV-IXS at SPring-8: KB, analyzer masks, soller slit & screen, BPM Submitt. Publ. (2018)Google Scholar
  39. B.W. Batterman, H. Cole, Dynamical diffraction of X-rays by perfect crystals. Rev. Mod. Phys. 36, 681–717 (1964)ADSMathSciNetCrossRefGoogle Scholar
  40. J. Bauer, J. Han, O. Gunnarsson, Retardation effects and the Coulomb pseudopotential in the theory of superconductivity. Phys. Rev. B. 87, 54507 (2013). https://doi.org/10.1103/PhysRevB.87.054507ADSCrossRefGoogle Scholar
  41. J. Baumert, C. Gutt, V.P. Shpakov, J.S. Tse, M. Krisch, M. Mueller, H. Requardt, D.D. Klug, S. Janssen, W. Press, Lattice dynamics of methane and xenon hydrate: observation of symmetry-avoided crossing by experiment and theory. Phys. Rev. B. 68, 174301–174307 (2003). https://doi.org/10.1103/PhysRevB.68.174301ADSCrossRefGoogle Scholar
  42. J. Baumert, C. Gutt, M. Krisch, H. Requardt, M. M¸ller, J.S. Tse, D.D. Klug, W. Press, Elastic properties of methane hydrate at high pressures. Phys. Rev. B. 72, 54302–54305 (2005). https://doi.org/10.1103/PhysRevB.72.054302ADSCrossRefGoogle Scholar
  43. G. Benedek, M. Bernasconi, V. Chis, E. Chulkov, P.M. Echenique, B. Hellsing, J.P. Toennies, Theory of surface phonons at metal surfaces: recent advances. J. Phys. Condens. Matter. 22, 84020 (2010). http://stacks.iop.org/0953-8984/22/i=8/a=084020CrossRefGoogle Scholar
  44. M. Beye, A. Föhlisch, A soft X-ray approach to electron–phonon interactions beyond the Born–Oppenheimer approximation. J. Electron Spectros. Relat. Phenom. 184, 313–317 (2011). https://doi.org/10.1016/j.elspec.2010.12.032CrossRefGoogle Scholar
  45. W. Björn, B. Alexeï, N. Sabrina, A. Daniele, M. Alessandro, C.S. Lal, M. Ranjan, O. Eiji, S. Anton, S. Surendra, et al., Dynamical and elastic properties of MgSiO3 perovskite (bridgmanite). Geophys. Res. Lett. 43, 2568–2575 (2016). https://doi.org/10.1002/2016GL067970CrossRefGoogle Scholar
  46. E. Blackburn, J. Chang, A.H. Said, B.M. Leu, R. Liang, D.A. Bonn, W.N. Hardy, E.M. Forgan, S.M. Hayden, Inelastic x-ray study of phonon broadening and charge-density wave formation in ortho-II-ordered YBa2Cu3O6.54. Phys. Rev. B. 88, 54506 (2013). https://doi.org/10.1103/PhysRevB.88.054506ADSCrossRefGoogle Scholar
  47. L. Boeri, J. Kortus, O. Andersen, Three-dimensional MgB2 type superconductivity in hole-doped diamond. Phys. Rev. Lett. 93, 237002 (2004). https://doi.org/10.1103/PhysRevLett.93.237002ADSCrossRefGoogle Scholar
  48. K.P. Bohnen, R. Heid, B. Renker, Phonon dispersion and electron-phonon coupling in MgB2 and AlB2. Phys. Rev. Lett. 86, 5771 (2001)ADSCrossRefGoogle Scholar
  49. K.P. Bohnen, R. Heid, M. Krauss, Phonon dispersion and electron-phonon interaction for YBa2Cu3O7 from first-principles calculations. Europhys. Lett. 64, 104–110 (2003). https://doi.org/10.1209/epl/i2003-00143-xADSCrossRefGoogle Scholar
  50. D. Bolmatov, M. Zhernenkov, L. Sharpnack, D.M. Agra-Kooijman, S. Kumar, A. Suvorov, R. Pindak, Y.Q. Cai, A. Cunsolo, Emergent optical phononic modes upon nanoscale mesogenic phase transitions. Nano Lett. 17, 3870–3876 (2017). https://doi.org/10.1021/acs.nanolett.7b01324ADSCrossRefGoogle Scholar
  51. E. Borissenko, M. Goffinet, A. Bosak, P. Rovillain, M. Cazayous, D. Colson, P. Ghosez, M. Krisch, Lattice dynamics of multiferroic BiFeO 3 studied by inelastic x-ray scattering. J. Phys. Condens. Matter. 25, 102201 (2013). http://stacks.iop.org/0953-8984/25/i=10/a=102201ADSCrossRefGoogle Scholar
  52. A. Bosak, M. Krisch, Phonon density of states probed by inelastic X-ray scattering. Phys. Rev. B. 72, 224305–224309 (2005). https://doi.org/10.1103/PhysRevB.72.224305ADSCrossRefGoogle Scholar
  53. A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements. Phys. Rev. B. 73, 41402–41404 (2006). https://doi.org/10.1103/PhysRevB.73.041402ADSCrossRefGoogle Scholar
  54. A. Bosak, M. Krisch, M. Mohr, J. Maultzsch, C. Thomsen, Elasticity of single-crystalline graphite: inelastic x-ray scattering study. Phys. Rev. B. 75, 153404–153408 (2007). https://doi.org/10.1103/PhysRevB.75.153408ADSCrossRefGoogle Scholar
  55. A. Bosak, M. Hoesch, D. Antonangeli, D.L. Farber, I. Fischer, M. Krisch, Lattice dynamics of vanadium: inelastic x-ray scattering measurements. Phys. Rev. B. 78, 20301 (2008a). https://doi.org/10.1103/PhysRevB.78.020301ADSCrossRefGoogle Scholar
  56. A. Bosak, K. Schmalzl, M. Krisch, W. van Beek, V. Kolobanov, Lattice dynamics of beryllium oxide: inelastic x-ray scattering and ab initio calculations. Phys. Rev. B. 77, 224303 (2008b). http://link.aps.org/doi/10.1103/PhysRevB.77.224303ADSCrossRefGoogle Scholar
  57. A. Bosak, M. Hoesch, M. Krisch, D. Chernyshov, P. Pattison, C. Schulze-Briese, B. Winkler, V. Milman, K. Refson, D. Antonangeli, et al., 3D imaging of the Fermi surface by thermal diffuse scattering. Phys. Rev. Lett. 103, 76403 (2009). https://doi.org/10.1103/PhysRevLett.103.076403ADSCrossRefGoogle Scholar
  58. A. Bosak, D. Chernyshov, M. Hoesch, P. Piekarz, M. Le Tacon, M. Krisch, A. Kozłowski, A.M. Oleś, K. Parlinski, Short-range correlations in magnetite above the Verwey temperature. Phys. Rev. X. 4, 11040 (2014). https://doi.org/10.1103/PhysRevX.4.011040CrossRefGoogle Scholar
  59. M. Braden, L. Pintschovius, T. Uefuji, K. Yamada, Dispersion of the high-energy phonon modes in Nd1.85Ce0.15CuO4. Phys. Rev. B. 72, 184517 (2005)ADSCrossRefGoogle Scholar
  60. R.A. Brand, M. Krisch, M.A. Chernikov, H.R. Ott, Phonons in the icosahedral quasicrystal i-AlPdMn studied by coherent inelastic scattering of synchrotron radiation. Ferroelectrics 250, 233–236 (2001)CrossRefGoogle Scholar
  61. R.A. Brand, J. Voss, F. Hippert, M. Krisch, R. Sterzel, W. Assmus, I.R. Fisher, Phonon dispersion curve of icosahedral MgZnY quasicrystals. J. Non. Cryst. Solids 334335 %0, 207–209 (2004). https://doi.org/10.1016/j.jnoncrysol.2003.11.040ADSCrossRefGoogle Scholar
  62. J.M. Brown, R.G. McQueen, Phase transitions, grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res. 91, 7485–7494 (1986)ADSCrossRefGoogle Scholar
  63. P. Brüesch, Phonons: Theory and Experiments 1 (Springer-Verlag, Berlin, 1982)CrossRefGoogle Scholar
  64. E. Burkel, Inelastic Scattering of X-rays with Very High Energy Resolution (Springer, Berlin, 1991)CrossRefGoogle Scholar
  65. E. Burkel, Phonon spectroscopy by inelastic X-ray scattering. Rep. Prog. Phys. 63, 171–232 (2000)ADSCrossRefGoogle Scholar
  66. E. Burkel, J. Peisl, B. Dorner, Observation of inelastic X-ray scattering from phonons. Europhys. Lett. 3, 957–961 (1987)ADSCrossRefGoogle Scholar
  67. R.G. Burkovsky, A.K. Tagantsev, K. Vaideeswaran, N. Setter, S.B. Vakhrushev, A.V. Filimonov, A. Shaganov, D. Andronikova, A.I. Rudskoy, A.Q.R. Baron, et al., Lattice dynamics and antiferroelectricity in PbZrO3 tested by x-ray and Brillouin light scattering. Phys. Rev. B. 90, 144301 (2014). https://doi.org/10.1103/PhysRevB.90.144301ADSCrossRefGoogle Scholar
  68. R.G. Burkovsky, D. Andronikova, Y. Bronwald, M. Krisch, K. Roleder, A. Majchrowski, A.V. Filimonov, A.I. Rudskoy, S.B. Vakhrushev, Lattice dynamics in the paraelectric phase of PbHfO 3 studied by inelastic x-ray scattering. J. Phys. Condens. Matter. 27, 335901 (2015). http://stacks.iop.org/0953-8984/27/i=33/a=335901CrossRefGoogle Scholar
  69. Y.Q. Cai, Presented at SRI2018 p (2018)Google Scholar
  70. Y.Q. Cai, D.S. Coburn, A. Cunsolo, J.W. Keister, M.G. Honnick, X.R. Huang, C.N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, et al., The ultrahigh resolution IXS beamline of NSLS-II: recent advances and scientific opportunities. J. Phys. Conf. 425, 201001 (2013)CrossRefGoogle Scholar
  71. M. Calandra, F. Mauri, Electron-phonon coupling and phonon self-energy in MgB2: interpretation of MgB2 Raman Sepctra. Phys. Rev. B. 71, 64501 (2005)ADSCrossRefGoogle Scholar
  72. E. Cappelluti, Electron-phonon effects on the Raman spectrum in MgB2. Phys. Rev. B. 75, 140505 (2006). (R)CrossRefGoogle Scholar
  73. F. Caruso, M. Hoesch, P. Achatz, J. Serrano, M. Krisch, E. Bustarret, F. Giustino, Nonadiabatic Kohn anomaly in heavily Boron-doped diamond. Phys. Rev. Lett. 119, 17001 (2017). https://link.aps.org/doi/10.1103/PhysRevLett.119.017001ADSCrossRefGoogle Scholar
  74. D. Chernyshov, A. Bosak, V. Dmitriev, Y. Filinchuk, H. Hagemann, Low-lying phonons in NaBH4 studied by inelastic scattering of synchrotron radiation. Phys. Rev. B. 78, 172104 (2008). https://doi.org/10.1103/PhysRevB.78.172104ADSCrossRefGoogle Scholar
  75. A.I. Chumakov, A.Q.R. Baron, R. Ruffer, H. Grunsteudel, H.F. Grunsteudel, A. Meyer, Nuclear resonance energy analysis of inelastic x-ray scattering. Phys. Rev. Lett. 76, 4258–4261 (1996a). http://link.aps.org/abstract/PRL/v76/p4258ADSCrossRefGoogle Scholar
  76. A.I. Chumakov, J. Metge, A.Q.R. Baron, H.F.F. Grünsteudel, H.F.F. Grünsteudel, R. Rüffer, T. Ishikawa, An X-ray monochromator with 1.65 meV energy resolution. Nucl. Inst. Methods 383, 642–644 (1996b). https://doi.org/10.1016/S0168-9002(96)00924-2ADSCrossRefGoogle Scholar
  77. R. Colella, Multiple diffraction of X-rays and the phase problem. Computational procedures and comparison with experiment. Acta Crystallogr. A30, 413–423 (1974)ADSCrossRefGoogle Scholar
  78. S.L. Cooper, M.V. Klein, B.G. Pazol, J.P. Rice, D.M. Ginzberg, Raman scattering from superconducting gap except in single-crystal YBa2Cu3O7-d. Phys. Rev. B. 37, 5920 (1988)ADSCrossRefGoogle Scholar
  79. M. d’Astuto, P.K. Mang, P. Giura, A. SHukla, P. Ghigna, A. Mirone, M. Braden, M. Greven, M. Krisch, F. Sette, Anomalous longitudinal dispersion in (Nd1.86Ce0.14)4+d determined by inelastic X-ray scattering. Phys. Rev. Lett. 88, 167002 (2002)ADSCrossRefGoogle Scholar
  80. M. d’Astuto, A. Mirone, P. Giura, D. Colson, A. Forget, M. Krisch, Phonon dispersion in the one-layer cuprate HgBa2CuO4+delta. J. Phys. Condens. Matter. 15, 8827–8836 (2003). https://doi.org/10.1088/0953-8984/15/50/014ADSCrossRefGoogle Scholar
  81. M. d’Astuto, M. Calandra, S. Reich, A. Shukla, M. Lazzeri, F. Mauri, J. Karpinski, N.D. Zhigadlo, A. Bossak, M. Krisch, Weak anharmonic effects in MgB2: a comparative inelastic X-ray scattering and Raman study. Phys. Rev. B. 75, 174508–174510 (2007). https://doi.org/10.1103/PhysRevB.75.174508ADSCrossRefGoogle Scholar
  82. M. d’Astuto, G. Dhalenne, J. Graf, M. Hoesch, P. Giura, M. Krisch, P. Berthet, A. Lanzara, A. Shukla, Sharp optical-phonon softening near optimal doping in La2-xBaxCuO4+delta observed via inelastic x-ray scattering. Phys. Rev. B. 78, 140511 (2008). http://link.aps.org/doi/10.1103/PhysRevB.78.140511ADSCrossRefGoogle Scholar
  83. M. d’Astuto, M. Calandra, N. Bendiab, G. Loupias, F. Mauri, S. Zhou, J. Graf, A. Lanzara, N. Emery, C. Hérold, et al., Phonon dispersion and low-energy anomaly in CaC6 from inelastic neutron and x-ray scattering experiments. Phys. Rev. B. 81, 104519 (2010). https://doi.org/10.1103/PhysRevB.81.104519ADSCrossRefGoogle Scholar
  84. M. D’Astuto, I. Yamada, P. Giura, L. Paulatto, A. Gauzzi, M. Hoesch, M. Krisch, M. Azuma, M. Takano, Phonon anomalies and lattice dynamics in the superconducting oxychlorides Ca2-xCuO2Cl2. Phys. Rev. B. 88, 14522 (2013). http://link.aps.org/doi/10.1103/PhysRevB.88.014522ADSCrossRefGoogle Scholar
  85. M. d’Astuto, R. Heid, B. Renker, F. Weber, H. Schober, O. De la Peña-Seaman, J. Karpinski, N.D. Zhigadlo, A. Bossak, M. Krisch, Nonadiabatic effects in the phonon dispersion of Mg1−x Alx B2. Phys. Rev. B. 93, 180508 (2016). https://doi.org/10.1103/PhysRevB.93.180508ADSCrossRefGoogle Scholar
  86. M. De Boissieu, S. Francoual, M. Mihalkovič, K. Shibata, A.Q.R. Baron, Y. Sidis, T. Ishimasa, D. Wu, T. Lograsso, L.-P. Regnault, et al., Lattice dynamics of the Zn-Mg-Sc icosahedral quasicrystal and its Zn-Sc periodic 1/1 approximant. Nat. Mater. 6, 977 (2007). https://doi.org/10.1038/nmat2044ADSCrossRefGoogle Scholar
  87. M. Deutsch, M. Hart, P. Sommer-Larsen, Thermal motion of atoms in crystalline silicon: beyond the Debye theory. Phys. Rev. B. 40, 11666–11669 (1989). http://link.aps.org/doi/10.1103/PhysRevB.40.11666ADSCrossRefGoogle Scholar
  88. T.P. Devereaux, A.M. Shvaika, K. Wu, K. Wohlfeld, C.J. Jia, Y. Wang, B. Moritz, L. Chaix, W.-S. Lee, Z.-X. Shen, et al., Directly characterizing the relative strength and momentum dependence of electron-phonon coupling using resonant inelastic x-ray scattering. Phys. Rev. X. 6, 041019 (2016). https://doi.org/10.1103/PhysRevX.6.041019CrossRefGoogle Scholar
  89. A. Doi, J. Fujioka, T. Fukuda, S. Tsutsui, D. Okuyama, Y. Taguchi, T. Arima, A.Q.R. Baron, Y. Tokura, Multi-spin-state dynamics during insulator-metal crossover in LaCoO3. Phys. Rev. B. 90, 81109 (2014). https://doi.org/10.1103/PhysRevB.90.081109ADSCrossRefGoogle Scholar
  90. B. Dorner, Y. Fujii, J. Hastings, D. Moncton, D. Siddons, and others, Notes from 1980 Vienna summer school provided by D. Moncton (1980).Google Scholar
  91. B. Dorner, E. Burkel, J. Peisl, An X-ray backscattering instrument with very high energy resolution. Nuc. Inst. Methods A426, 450 (1986)ADSCrossRefGoogle Scholar
  92. B. Dorner, E. Burkel, T. Illini, J. Peisl, First measurement of a phonon dispersion curve by inelastic X-ray scattering. Z Phys. B: Condens. Matter. 69, 179–183 (1987). https://doi.org/10.1007/BF01307274ADSCrossRefGoogle Scholar
  93. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015). https://doi.org/10.1038/nature14964ADSCrossRefGoogle Scholar
  94. E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Mel’nik, N.J. Curro, J.D. Thompson, S.M. Stishov, Superconductivity in diamond. Nature 428, 542–545 (2004). https://doi.org/10.1038/nature02449ADSCrossRefGoogle Scholar
  95. G.M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP. 11, 696–702 (1960)MathSciNetzbMATHGoogle Scholar
  96. D.S. Ellis, H. Uchiyama, S. Tsutsui, K. Sugimoto, K. Kato, D. Ishikawa, A.Q.R. Baron, Phonon softening and dispersion in EuTiO3. Phys. Rev. B. 86, 220301 (2012). http://link.aps.org/doi/10.1103/PhysRevB.86.220301ADSCrossRefGoogle Scholar
  97. D.S. Ellis, H. Uchiyama, S. Tsutsui, K. Sugimoto, K. Kato, A.Q.R. Baron, X-ray study of the structural distortion in EuTiO3. Phys. B Condens. Matter. 442, 34–38 (2014). http://www.sciencedirect.com/science/article/pii/S0921452614001288ADSCrossRefGoogle Scholar
  98. H. Euchner, M. Mihalkovic, F. Gähler, M. Johnson, H. Schober, S. Rols, E. Suard, A. Bosak, S. Ohhashi, A.-P. Tsai, et al., Anomalous vibrational dynamics in the Mg2Zn11 phase. Phys. Rev. B. 83, 144202 (2011). https://doi.org/10.1103/PhysRevB.83.144202ADSCrossRefGoogle Scholar
  99. S. Fahy, É.D. Murray, D.A. Reis, Resonant squeezing and the anharmonic decay of coherent phonons. Phys. Rev. B. 93, 134308 (2016). https://doi.org/10.1103/PhysRevB.93.134308ADSCrossRefGoogle Scholar
  100. D.L. Farber, M. Krisch, D. Antonangeli, A. Beraud, J. Badro, F. Occelli, D. Orlikowski, Lattice dynamics of molybdenum at high pressure. Phys. Rev. Lett. 96, 115502–115504 (2006). https://doi.org/10.1103/PhysRevLett.96.115502ADSCrossRefGoogle Scholar
  101. K. Finkelstein, Private communication about the limits of RIE (2005).Google Scholar
  102. G. Fiquet, J. Badro, F. Guyot, H. Requardt, M. Krisch, Sound velocities in iron to 110 gigapascals. Science 291(80), 468–471 (2001). https://doi.org/10.1126/science.291.5503.468ADSCrossRefGoogle Scholar
  103. I. Fischer, A. Bosak, M. Krisch, Single-crystal lattice dynamics derived from polycrystalline inelastic x-ray scattering spectra. Phys. Rev. B. 79, 134302 (2009). https://doi.org/10.1103/PhysRevB.79.134302ADSCrossRefGoogle Scholar
  104. A. Floris, G. Profeta, N.N. Lathiotakis, M. L¸ders, M.A.L. Marques, C. Franchini, E.K.U. Gross, A. Continenza, S. Massidda, Superconducting properties of MgB2 from first principles. Phys. Rev. Lett. 94, 37004 (2005). http://link.aps.org/abstract/PRL/v94/e037004ADSCrossRefGoogle Scholar
  105. H.F. Fong, B. Keimer, P.W. Anderson, D. Reznik, F. Dogan, J.A. Aksay, Phonon and magnetic neutron scattering at 41 meV in YBa2Cu3O7. Phys. Rev. Lett. 75, 316–320 (1995)ADSCrossRefGoogle Scholar
  106. Y. Fujii, J. Hastings, S. Ulc, D. Moncton, SSRPP technical report VII-95 (1982).Google Scholar
  107. T. Fukuda, J. Mizuki, K. Ikeuchi, K. Yamada, A.Q.R. Baron, S. Tsutsui, Doping dependence of softening in the bond-stretching phonon mode of La2−x Srx CuO4 (0 <= x <= 0.29). Phys. Rev. B 71, 60501–60504 (2005). http://link.aps.org/abstract/PRB/v71/e060501ADSCrossRefGoogle Scholar
  108. T. Fukuda, A.Q.R. Baron, S. Shamoto, M. Ishikado, H. Nakamura, M. Machida, H. Uchiyama, S. Tsutsui, A. Iyo, H. Kito, et al., Lattice dynamics of LaFeAsO1-xFx and PrFeAsO1-y via inelastic X-ray scattering and first-principles calculation. J. Phys. Soc. Jpn. 77, 103715 (2008)ADSCrossRefGoogle Scholar
  109. T. Fukuda, A.Q.R. Baron, H. Nakamura, S. Shamoto, M. Ishikado, M. Machida, H. Uchiyama, A. Iyo, H. Kito, J. Mizuki, et al., Soft and isotropic phonons in PrFeAsO1-y. Phys. Rev. B. 84, 64504 (2011). http://link.aps.org/doi/10.1103/PhysRevB.84.064504ADSCrossRefGoogle Scholar
  110. H. Fukui, T. Katsura, T. Kuribayashi, T. Matsuzaki, A. Yoneda, E. Ito, Y. Kudoh, S. Tsutsui, A.Q.R. Baron, Precise determination of elastic constants by high-resolution inelastic X-ray scattering. J. Synch. Rad. 15, 618–623 (2008). https://doi.org/10.1107/S0909049508023248CrossRefGoogle Scholar
  111. H. Fukui, A. Yoneda, A. Nakatsuka, N. Tsujino, S. Kamada, E. Ohtani, A. Shatskiy, N. Hirao, S. Tsutsui, H. Uchiyama, et al., Effect of cation substitution on bridgmanite elasticity: a key to interpret seismic anomalies in the lower mantle. Sci. Rep. 6, 33337 (2016). https://doi.org/10.1038/srep33337ADSCrossRefGoogle Scholar
  112. H. Fukui, A.Q.R. Baron, D. Ishikawa, H. Uchiyama, Y. Ohishi, T. Tsuchiya, H. Kobayashi, T. Matsuzaki, T. Yoshino, T. Katsura, Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition. J. Phys. Condens. Matter 29, 245401 (2017). https://doi.org/10.1088/1361-648X/aa7026ADSCrossRefGoogle Scholar
  113. D.R. Gardner, C.J. Bonnoit, R. Chisnell, A.H. Said, B.M. Leu, T.J. Williams, G.M. Luke, Y.S. Lee, Inelastic x-ray scattering measurements of phonon dynamics in URu2Si2. Phys. Rev. B. 93, 75123 (2016). https://doi.org/10.1103/PhysRevB.93.075123ADSCrossRefGoogle Scholar
  114. E. Gerdau, H. de Waard, Hyperfine Interactions, (2000), pp. 123–125Google Scholar
  115. G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D.G. Hawthorn, F. He, et al., Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x. Science 337(80), 821–825 (2012). https://doi.org/10.1126/science.1223532ADSCrossRefGoogle Scholar
  116. S. Ghose, M. Krisch, A.R. Oganov, A. Beraud, A. Bosak, R. Gulve, R. Seelaboyina, H. Yang, S.K. Saxena, Lattice dynamics of MgO at high pressure: theory and experiment. Phys. Rev. Lett. 96, 35504–35507 (2006). https://doi.org/10.1103/PhysRevLett.96.035507CrossRefGoogle Scholar
  117. F. Giustino, M.L. Cohen, S.G. Louie, Small phonon contribution to the photoemission kink in the copper oxide superconductors. Nature 452, 975–978 (2008). https://doi.org/10.1038/nature06874ADSCrossRefGoogle Scholar
  118. A.F. Goncharov, V.V. Struzhkin, E. Gregoryanz, J. Hu, R.J. Hemley, H. Mao, G. Lapertot, S.L. Bud’ko, P.C. Canfield, Raman spectrum and lattice parameters of MgB_{2} as a function of pressure. Phys. Rev. B. 64, 100509 (2001). http://link.aps.org/abstract/PRB/v64/e100509ADSCrossRefGoogle Scholar
  119. W. Graeff, G. Materlik, Millielectron volt energy resolution in bragg backscattering. Nucl. Inst. Meth. 195, 97 (1982)ADSCrossRefGoogle Scholar
  120. J. Graf, M. D’Astuto, P. Giura, A. Shukla, N.L. Saini, A. Bossak, M. Krisch, S.W. Cheong, T. Sasagawa, A. Lanzara, In-plane copper-oxygen bond-stretching mode anomaly in underdoped La2-xSrxCuO4+delta measured with high-resolution inelastic x-ray scattering. Phys. Rev. B. 76, 172504–172507 (2007). https://doi.org/10.1103/PhysRevB.76.172507ADSCrossRefGoogle Scholar
  121. J. Graf, M. d’Astuto, C. Jozwiak, D.R. Garcia, N.L. Saini, M. Krisch, K. Ikeuchi, A.Q.R. Baron, H. Eisaki, A. Lanzara, Bond stretching phonon softening and kinks in the angle-resolved photoemission spectra of optimally doped Bi_2Sr_1.6La_0.4Cu2O_6+delta superconductors. Phys. Rev. Lett. 100, 227002–227004 (2008). http://link.aps.org/abstract/PRL/v100/e227002ADSCrossRefGoogle Scholar
  122. H. Gretarsson, J.P. Clancy, Y. Singh, P. Gegenwart, J.P. Hill, J. Kim, M.H. Upton, A.H. Said, D. Casa, T. Gog, et al., Magnetic excitation spectrum of Na2IrO. Phys. Rev. B. 87, 220407 (2013). https://doi.org/10.1103/PhysRevB.87.220407ADSCrossRefGoogle Scholar
  123. G. Grimvall, The Electron-Phonon Interaction in Metals (North Holland Publishing Co, Amsterdam, 1981)Google Scholar
  124. A. Grüneis, J. Serrano, A. Bosak, M. Lazzeri, S.L. Molodtsov, L. Wirtz, C. Attaccalite, M. Krisch, A. Rubio, F. Mauri, et al., Phonon surface mapping of graphite: disentangling quasi-degenerate phonon dispersions. Phys. Rev. B. 80, 85423 (2009). http://link.aps.org/doi/10.1103/PhysRevB.80.085423ADSCrossRefGoogle Scholar
  125. O. Gunnarsson, O. Rösch, Interplay between electron-phonon and Coulomb interactions in cuprates. J. Phys. Condens. Matter. 20, 43201 (2008). http://stacks.iop.org/0953-8984/20/043201CrossRefGoogle Scholar
  126. S. Hahn, G. Tucker, J.-Q. Yan, A. Said, B. Leu, R. McCallum, E. Alp, T. Lograsso, R. McQueeney, B. Harmon, Magnetism-dependent phonon anomaly in LaFeAsO observed via inelastic x-ray scattering. Phys. Rev. B. 87, 104518 (2013). https://doi.org/10.1103/PhysRevB.87.104518ADSCrossRefGoogle Scholar
  127. R. Heid, K.-P. Bohnen, R. Zeyher, D. Manske, Momentum dependence of the electron-phonon coupling and self-energy effects in superconducting YBa2Cu3O7 within the local density approximation. Phys. Rev. Lett. 100, 137001–137004 (2008). http://link.aps.org/abstract/PRL/v100/e137001ADSCrossRefGoogle Scholar
  128. B. Henderson, G.F. Imbusch, Optical Spectroscopy of Inorganic Solids Oxford (Oxford University Press, New York, 1989)Google Scholar
  129. J. Hlinka, I. Gregova, J. Pokrny, A. Plecenik, P. Kus, L. Satrapinsky, S. Benacka, Phonons in MgB2 by polarized Raman scattering on single crystals. Phys. Rev. B. 64, 140503R (2001)ADSCrossRefGoogle Scholar
  130. J. Hlinka, P. Ondrejkovic, M. Kempa, E. Borissenko, M. Krisch, X. Long, Z.-G. Ye, Soft antiferroelectric fluctuations in morphotropic PbZr1-xTixO3 single crystals as evidenced by inelastic x-ray scattering. Phys. Rev. B. 83, 140101 (2011). http://link.aps.org/doi/10.1103/PhysRevB.83.140101ADSCrossRefGoogle Scholar
  131. M. Hoesch, T. Fukuda, J. Mizuki, T. Takenouchi, H. Kawarada, J.P.P. Sutter, S. Tsutsui, A.Q.R. Baron, M. Nagao, Y. Takano, et al., Phonon softening in superconducting diamond. Phys. Rev. B. 75, 140508(R) (2007). https://doi.org/10.1103/PhysRevB.75.140508ADSCrossRefGoogle Scholar
  132. M. Hoesch, A. Bosak, D. Chernyshov, H. Berger, M. Krisch, Giant Kohn anomaly and the phase transition in charge density wave ZrTe3. Phys. Rev. Lett. 102, 86402 (2009). https://doi.org/10.1103/PhysRevLett.102.086402ADSCrossRefGoogle Scholar
  133. M. Hoesch, P. Piekarz, A. Bosak, M. Le Tacon, M. Krisch, A. Kozłowski, A.M. Oleś, K. Parlinski, Anharmonicity due to electron-phonon coupling in magnetite. Phys. Rev. Lett. 110, 207204 (2013). http://link.aps.org/doi/10.1103/PhysRevLett.110.207204ADSCrossRefGoogle Scholar
  134. M. Holt, Z. Wu, H. Hong, P. Zschack, P. Jemian, J. Tischler, H. Chen, T.C. Chiang, Determination of phonon dispersions from X-ray transmission scattering: the example of silicon. Phys. Rev. Lett. 83, 3317 (1999). http://link.aps.org/abstract/PRL/v83/p3317ADSCrossRefGoogle Scholar
  135. H. Hong, R. Xu, A. Alatas, M. Holt, T.-C. Chiang, Central peak and narrow component in x-ray scattering measurementsnear the displacive phase transition in SrTiO3. Phys. Rev. B. 78, 104121 (2008)ADSCrossRefGoogle Scholar
  136. S. Hosokawa, M. Inui, K. Matsuda, D. Ishikawa, A.Q.R. Baron, Damping of the collective modes in liquid Fe. Phys. Rev. B. 77, 174203–174210 (2008). http://link.aps.org/abstract/PRB/v77/e174203ADSCrossRefGoogle Scholar
  137. S. Huotari, G. Vanko, F. Albergamo, C. Ponchut, H. Graafsma, C. Henriquet, R. Verbeni, G. Monaco, Improving the performance of high-resolution X-ray spectrometers with position-sensitive pixel detectors. J. Synch. Rad. 12, 467–472 (2005). https://doi.org/10.1107/s0909049505010630CrossRefGoogle Scholar
  138. K. Ikeuchi, K. Isawa, K. Yamada, T. Fukuda, J. Mizuki, S. Tsutsui, A.Q.R. Baron, Growth, characterization, and application of single-crystal La2-xSrCuO4 having a gradient in Sr concentration. Jpn. J. Appl. Phys. 45, 1594–1601 (2006)ADSCrossRefGoogle Scholar
  139. D. Ishikawa, A.Q.R. Baron, Temperature gradient analyzers for compact high-resolution X-ray spectrometers. J. Synch. Rad. 17, 12–24 (2010). https://doi.org/10.1107/S0909049509043167CrossRefGoogle Scholar
  140. T. Ishikawa, K. Hirano, S. Kikuta, Applications of perfect crystal X-ray optics. Nucl. Inst. Methods Phys. Res. A 308, 356–362 (1991)ADSCrossRefGoogle Scholar
  141. D. Ishikawa, H. Uchiyama, S. Tsutsui, H. Fukui, A.Q.R. Baron, Compound focusing for hard-x-ray inelastic scattering. Proc. SPIE. 8848, 88480 (2013). https://doi.org/10.1117/12.2023795ADSCrossRefGoogle Scholar
  142. D. Ishikawa, D.S. Ellis, H. Uchiyama, A.Q.R. Baron, Inelastic X-ray scattering with 0.75meV resolution at 25.7keV using a temperature-gradient analyzer. J. Synch. Rad. 22, 3–9 (2015). https://doi.org/10.1107/S1600577514021006CrossRefGoogle Scholar
  143. D. Ishikawa, M.W. Haverkort, A.Q.R. Baron, Lattice and magnetic effects on a d–d excitation in NiO Using a 25 meV resolution X-ray spectrometer. J. Phys. Soc. Jpn, Lett. 86, 93706 (2017). https://doi.org/10.7566/JPSJ.86.093706CrossRefGoogle Scholar
  144. K. Iwasa, R. Igarashi, K. Saito, C. Laulh√©, T. Orihara, S. Kunii, K. Kuwahara, H. Nakao, Y. Murakami, F. Iga, et al., Motion of the guest ion as precursor to the first-order phase transition in the cage system GdB_{6}. Phys. Rev. B. 84, 214308 (2011). https://doi.org/10.1103/PhysRevB.84.214308ADSCrossRefGoogle Scholar
  145. K. Iwasa, K. Kuwahara, Y. Utsumi, K. Saito, H. Kobayashi, T. Sato, M. Amano, T. Hasegawa, N. Ogita, M. Udagawa, et al., Renormalized motion of dysprosium atoms filling boron cages of DyB6. J. Phys. Soc. Jpn. 81, 113601 (2012). https://doi.org/10.1143/JPSJ.81.113601ADSCrossRefGoogle Scholar
  146. K. Iwasa, F. Iga, A. Yonemoto, Y. Otomo, S. Tsutsui, A.Q.R. Baron, Universality of anharmonic motion of heavy rare-earth atoms in hexaborides. J. Phys. Soc. Jpn. 83 (2014). https://doi.org/10.7566/JPSJ.83.094604ADSCrossRefGoogle Scholar
  147. R.W. James, The Optical Principles of the Diffraction of X-rays (G. Bell & Sons, Ltd, London, 1962)Google Scholar
  148. R. Jeanloz, P.M. Celliers, G.W. Collins, J.H. Eggert, K.K.M. Lee, R.S. McWilliams, S. Brygoo, P. Loubeyre, Achieving high-density states through shock-wave loading of precompressed samples. Proc. Natl. Acad. Sci. U. S. A. 104, 9172–9177 (2007). https://doi.org/10.1073/pnas.0608170104ADSCrossRefGoogle Scholar
  149. L. Jin, L. Jung-Fu, A. Ahmet, M.Y. Hu, Z. Jiyong, D. Leonid, Seismic parameters of hcp-Fe alloyed with Ni and Si in the Earth’s inner core. J. Geophys. Res. Solid Earth. 121, 610–623 (2016). https://doi.org/10.1002/2015JB012625ADSCrossRefGoogle Scholar
  150. R. Kajimoto, H. Sagayama, K. Sasai, T. Fukuda, S. Tsutsui, T. Arima, K. Hirota, Y. Mitsui, H. Yoshizawa, A.Q.R. Baron, et al., Unconventional ferroelectric transition in the multiferroic compound TbMnO[sub 3] revealed by the absence of an anomaly in c-polarized phonon dispersion. Phys. Rev. Lett. 102, 247602–247604 (2009). https://doi.org/10.1103/PhysRevLett.102.247602ADSCrossRefGoogle Scholar
  151. R. Kajimoto, M. Nakamura, Y. Inamura, F. Mizuno, K. Nakajima, S. Ohira-Kawamura, T. Yokoo, T. Nakatani, R. Maruyama, K. Soyama, et al., The Fermi chopper spectrometer 4SEASONS at J-PARC. J. Phys. Soc. Jpn. 80, SB025 (2011). https://doi.org/10.1143/JPSJS.80SB.SB025CrossRefGoogle Scholar
  152. S. Kamada, E. Ohtani, H. Fukui, T. Sakai, H. Terasaki, S. Takahashi, Y. Shibazaki, S. Tsutsui, A.Q.R. Baron, N. Hirao, et al., The sound velocity measurements of Fe3S. Am. Mineral 99, 98–101 (2014). https://doi.org/10.2138/am.2014.4463ADSCrossRefGoogle Scholar
  153. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008). http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ja800073mCrossRefGoogle Scholar
  154. A.P. Kantor, I.Y. Kantor, A.V. Kurnosov, A.Y. Kuznetsov, N.A. Dubrovinskaia, M. Krisch, A.A. Bossak, V.P. Dmitriev, V.S. Urusov, L.S. Dubrovinsky, Sound wave velocities of fcc FeNi alloy at high pressure and temperature by mean of inelastic X-ray scattering. Phys. Earth Planet. Inter. 164, 83–89 (2007). https://doi.org/10.1016/j.pepi.2007.06.006ADSCrossRefGoogle Scholar
  155. S. I. Kawaguchi, Y. Nakajima, K. Hirose, T. Komabayashi, H. Ozawa, S. Tateno, Y. Kuwayama, S. Tsutsui, A. Q. R. Baron, Sound velocity of liquid Fe-Ni-S at high pressure J. Geophys. Res. Solid Earth. 122 (2017). https://doi.org/10.1002/2016JB013609.ADSGoogle Scholar
  156. Y. Kawakita, S. Hosokawa, T. Enosaki, K. Ohshima, S. Takeda, W.-C. Pilgrim, S. Tsutsui, Y. Tanaka, A.Q.R. Baron, K. Oshima, et al., Coherent dynamic scattering law of divalent liquid Mg. J. Phys. Soc. Jpn. L72, 1603 (2003). https://doi.org/10.1143/JPSJ.72.1603ADSCrossRefGoogle Scholar
  157. H. Kawano, H. Yoshizawa, H. Takeya, K. Kadowaki, Anomalous phonon scattering below Tc in YNi2B2C. Phys. Rev. Lett. 77, 4628–4631 (1996). http://link.aps.org/doi/10.1103/PhysRevLett.77.4628ADSCrossRefGoogle Scholar
  158. D. Ketenoglu, M. Harder, K. Klementiev, M. Upton, M. Taherkhani, M. Spiwek, F.-U. Dill, H.-C. Wille, H. Yavaş. Resonant inelastic x-ray scattering spectrometer with 25 meV resolution at Cu K-edge. Submitt. Publ (2014)Google Scholar
  159. H. Khosroabadi, S. Miyasaka, J. Kobayashi, K. Tanaka, H. Uchiyama, A.Q.R. Baron, S. Tajima, Softening of bond-stretching phonon mode in Ba_{1-x}K_{x}BiO_{3} at the metal-insulator transition. Phys. Rev. B. 83, 224525 (2011). http://link.aps.org/doi/10.1103/PhysRevB.83.224525ADSCrossRefGoogle Scholar
  160. K.-J. Kim, Y. Shvyd’ko, S. Reiche, A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett. 100, 244802 (2008). http://link.aps.org/doi/10.1103/PhysRevLett.100.244802ADSCrossRefGoogle Scholar
  161. J. Kim, D. Casa, A. Said, R. Krakora, B.J. Kim, E. Kasman, X. Huang, T. Gog, Quartz-based flat-crystal resonant inelastic x-ray scattering spectrometer with sub-10 meV energy resolution. Sci. Rep. 8, 1958 (2018). https://doi.org/10.1038/s41598-018-20396-zADSCrossRefGoogle Scholar
  162. A.C.W. Klimczuk, H.C. Walker, R. Springell, M. Krisch, A. Bosak, A.H. Hill, C.E. Zvorişte-Walters, E. Colineau, J.C. Griveau, D. Bouëxière, R. Eloirdi, R. Caciuffo, T. Klimczuk, Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO. J. Phys. Condens. Matter. 27, 325702 (2015). http://stacks.iop.org/0953-8984/27/i=32/a=325702CrossRefGoogle Scholar
  163. Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, Electron-phonon interacrion in the normal and superconducting states of MgB2. Phys. Rev. B. 64, 20501 (2001)ADSCrossRefGoogle Scholar
  164. K.L. Kostov, S. Polzin, W. Widdra, High-resolution phonon study of the Ag(100) surface. J. Phys. Condens. Matter. 23, 484006 (2011). http://stacks.iop.org/0953-8984/23/i=48/a=484006CrossRefGoogle Scholar
  165. M.M. Koza, A. Leithe-Jasper, H. Rosner, W. Schnelle, H. Mutka, M.R. Johnson, M. Krisch, L. Capogna, Y. Grin, Vibrational dynamics of the filled skutterudites M1-xFe4Sb12 (M=Ca, Sr, Ba, and Yb): temperature response, dispersion relation, and material properties. Phys. Rev. B. 84, 14306 (2011). http://link.aps.org/doi/10.1103/PhysRevB.84.014306ADSCrossRefGoogle Scholar
  166. M. Krisch, F. Sette, Inelastic X-ray scattering from phonons. Light Scatt. Solids IX 108, 317–369 (2007)ADSCrossRefGoogle Scholar
  167. M. Krisch, R.A. Brand, M. Chernikov, H.R. Ott, Phonons in the icosahedral quasicrystal i-AlPdMn studied by inelastic X-ray scattering. Phys. Rev. B. 65, 134201–134207 (2002). https://doi.org/10.1103/PhysRevB.65.134201ADSCrossRefGoogle Scholar
  168. M. Krisch, A. Mermet, H. Grimm, V.T. Forsyth, A. Rupprecht, Phonon dispersion of oriented DNA by inelastic X-ray scattering. Phys. Rev. E. 73, 61909–61910 (2006). https://doi.org/10.1103/PhysRevE.73.061909ADSCrossRefGoogle Scholar
  169. M. Krisch, D.L. Farber, R. Xu, D. Antonangeli, C.M. Aracne, A. Beraud, T.-C. Chiang, J. Zarestky, D.Y. Kim, E.I. Isaev, et al., Phonons of the anomalous element cerium. Proc. Natl. Acad. Sci. 108, 9342–9345 (2011). https://doi.org/10.1073/pnas.1015945108ADSCrossRefGoogle Scholar
  170. R. Kuna, R. Minikayeva, M. Trzyna, K. Gas, A. Bosak, A. Szczerbakow, S. Petit, J. Łazewskif, W. Szuszkiewiczb, Inelastic X-ray scattering studies of phonon dispersion in PbTe and (Pb,Cd)Te solid solution. ACTA Phys. Pol. A 130, 1251 (2016). https://doi.org/10.12693/APhysPolA.130.1251CrossRefGoogle Scholar
  171. S. Kuroiwa, A.Q.R. Baron, T. Muranaka, R. Heid, K.-P. Bohnen, J. Akimitsu, Soft-phonon-driven superconductivity in CaAlSi as seen by inelastic x-ray scattering. Phys. Rev. B. 77, 140503 (2008). https://doi.org/10.1103/PhysRevB.77.140503ADSCrossRefGoogle Scholar
  172. C.H. Lai, H.S. Fung, W.B. Wu, H.Y. Huang, H.W. Fu, S.W. Lin, S.W. Huang, C.C. Chiu, D.J. Wang, L.J. Huang, et al., Highly efficient beamline and spectrometer for inelastic soft X-ray scattering at high resolution. J. Synch. Rad. 21, 325–332 (2014). https://doi.org/10.1107/S1600577513030877CrossRefGoogle Scholar
  173. A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Keller, D.L. Feng, E.D. Le, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, et al., Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412, 510 (2001)ADSCrossRefGoogle Scholar
  174. M. Le Tacon, M. Krisch, A. Bosak, J.-W.G. Bos, S. Margadonna, Phonon density of states in NdFeAsO1-xFx. Phys. Rev. B. 78, 140505 (2008). http://link.aps.org/doi/10.1103/PhysRevB.78.140505CrossRefGoogle Scholar
  175. M. Le Tacon, T.R. Forrest, C. Rüegg, A. Bosak, A.C. Walters, R. Mittal, H.M. Rønnow, N.D. Zhigadlo, S. Katrych, J. Karpinski, et al., Inelastic x-ray scattering study of superconducting SmFeAsO1-xFy single crystals: evidence for strong momentum-dependent doping-induced renormalizations of optical phonons. Phys. Rev. B. 80, 220504 (2009). http://link.aps.org/doi/10.1103/PhysRevB.80.220504CrossRefGoogle Scholar
  176. M. Le Tacon, A. Bosak, S.M. Souliou, G. Dellea, T. Loew, R. Heid, K.P. Bohnen, G. Ghiringhelli, M. Krisch, B. Keimer, Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nat Phys. 10, 52–58 (2013). https://doi.org/10.1038/nphys2805CrossRefGoogle Scholar
  177. S. Lee, H. Mori, T. Masui, Y. Eltsev, A. Yamamoto, S. Tajima, Growth, structure analysis and anisotropic superconducting properties of MgB2 single crystals. J. Phys. Soc. Jpn. 70, 2255–2258 (2001). https://doi.org/10.1143/JPSJ.70.2255ADSCrossRefGoogle Scholar
  178. C.-H. Lee, K. Kihou, K. Horigane, S. Tsutsui, T. Fukuda, H. Eisaki, A. Iyo, H. Yamaguchi, A.Q.R. Baron, M. Braden, et al., Effect of K Doping on phonons in Ba1-xKxFe2As2. J. Phys. Soc. Jpn 79, 14714 (2010)CrossRefGoogle Scholar
  179. W.S. Lee, S. Johnston, B. Moritz, J. Lee, M. Yi, K.J. Zhou, T. Schmitt, L. Patthey, V. Strocov, K. Kudo, et al., Role of lattice coupling in establishing electronic and magnetic properties in quasi-one-dimensional cuprates. Phys. Rev. Lett. 110, 265502 (2013). http://link.aps.org/doi/10.1103/PhysRevLett.110.265502ADSCrossRefGoogle Scholar
  180. M. Leroux, M. Le Tacon, M. Calandra, L. Cario, M.-A. Méasson, P. Diener, E. Borrissenko, A. Bosak, P. Rodière, Anharmonic suppression of charge density waves in 2H-NbS{}_{2}. Phys. Rev. B. 86, 155125 (2012). https://doi.org/10.1103/PhysRevB.86.155125ADSCrossRefGoogle Scholar
  181. M. Leroux, I. Errea, M. Le Tacon, S.-M. Souliou, G. Garbarino, L. Cario, A. Bosak, F. Mauri, M. Calandra, P. Rodière, Strong anharmonicity induces quantum melting of charge density wave in 2H-NbSe_{2} under pressure. Phys. Rev. B. 92, 140303 (2015). https://doi.org/10.1103/PhysRevB.92.140303. https://link.aps.org/doi/10.1103/PhysRevB.92.140303ADSCrossRefGoogle Scholar
  182. M. Leroux, L. Cario, A. Bosak, P. Rodière, Traces of charge density waves in NbS_{2}. Phys. Rev. B. 97, 195140 (2018). https://doi.org/10.1103/PhysRevB.97.195140ADSCrossRefGoogle Scholar
  183. Y. Liu, D. Berti, P. Baglioni, S.-H. Chen, A. Alatas, H. Sinn, A. Said, E. Alp, Inelastic X-ray scattering studies of phonons propagating along the axial direction of a DNA molecule having different counter-ion atmosphere. J. Phys. Chem. Solids 66, 2235–2245 (2005). https://doi.org/10.1016/j.jpcs.2005.09.017ADSCrossRefGoogle Scholar
  184. J. Liu, J.-F. Lin, A. Alatas, W. Bi, Sound velocities of bcc-Fe and Fe0.85Si0.15 alloy at high pressure and temperature. Phys. Earth Planet. Inter 233, 24–32 (2014). https://doi.org/10.1016/j.pepi.2014.05.008ADSCrossRefGoogle Scholar
  185. G. Liu, H. K. Mao, A. Q. R. Baron, Work in progress (n.d.).Google Scholar
  186. I. Loa, M.I. McMahon, A. Bosak, Origin of the incommensurate modulation in Te-III and Fermi-surface nesting in a simple metal. Phys. Rev. Lett. 102, 35501 (2009). http://link.aps.org/doi/10.1103/PhysRevLett.102.035501ADSCrossRefGoogle Scholar
  187. I. Loa, E.I. Isaev, M.I. McMahon, D.Y. Kim, B. Johansson, A. Bosak, M. Krisch, Lattice dynamics and superconductivity in cerium at high pressure. Phys. Rev. Lett. 108, 45502 (2012). http://link.aps.org/doi/10.1103/PhysRevLett.108.045502ADSCrossRefGoogle Scholar
  188. M. Lüders, M.A.L. Marques, N.N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda, E.K.U. Gross, {Ab initio} theory of superconductivity. I. Density functional formalism and approximate functionals. Phys. Rev. B. 72, 24545 (2005). http://link.aps.org/doi/10.1103/PhysRevB.72.024545ADSCrossRefGoogle Scholar
  189. H. Ma, C. Li, S. Tang, J. Yan, A. Alatas, L. Lindsay, B.C. Sales, Z. Tian, Boron arsenide phonon dispersion from inelastic x-ray scattering: potential for ultrahigh thermal conductivity. Phys. Rev. B. 94, 220303 (2016). https://doi.org/10.1103/PhysRevB.94.220303ADSCrossRefGoogle Scholar
  190. R.M. Macfarlane, H. Rosen, Temperature dependence of the Raman spectrum of the high Tc superconductor YBa2Cu3O7. Solid State Commun. 63, 831 (1987)ADSCrossRefGoogle Scholar
  191. P. Maldonado, L. Paolasini, P.M. Oppeneer, T.R. Forrest, A. Prodi, N. Magnani, A. Bosak, G.H. Lander, R. Caciuffo, Crystal dynamics and thermal properties of neptunium dioxide. Phys. Rev. B. 93, 144301 (2016). https://doi.org/10.1103/PhysRevB.93.144301ADSCrossRefGoogle Scholar
  192. E. Mamontov, S.B. Vakhrushev, Y.A. Kumzerov, A. Alatas, H. Sinn, Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering. Solid State Commun. 149, 589–592 (2009). https://doi.org/10.1016/j.ssc.2009.01.033ADSCrossRefGoogle Scholar
  193. M.E. Manley, G.H. Lander, H. Sinn, A. Alatas, W.L. Hults, R.J. McQueeney, J.L. Smith, J. Willit, Phonon dispersion in uranium measured using inelastic x-ray scattering. Phys. Rev. B. 67, 52302 (2003). http://link.aps.org/doi/10.1103/PhysRevB.67.052302ADSCrossRefGoogle Scholar
  194. M.E. Manley, M. Yethiraj, H. Sinn, H.M. Volz, A. Alatas, J.C. Lashley, W.L. Hults, G.H. Lander, J.L. Smith, Formation of a new dynamical mode in alpha-uranium observed by inelastic X-ray and neutron scattering. Phys. Rev. Lett. 96, 125501 (2006). http://link.aps.org/doi/10.1103/PhysRevLett.96.125501ADSCrossRefGoogle Scholar
  195. M.E. Manley, A.H. Said, M.J. Fluss, M. Wall, J.C. Lashley, A. Alatas, K.T. Moore, Y. Shvyd’ko, Phonon density of states of alpha- and delta -plutonium by inelastic x-ray scattering. Phys. Rev. B. 79, 52301 (2009). http://link.aps.org/doi/10.1103/PhysRevB.79.052301ADSCrossRefGoogle Scholar
  196. W.L. Mao, V.V. Struzhkin, A.Q.R. Baron, S. Tsutsui, C.E. Tommaseo, H.-R. Wenk, M.Y. Hu, P. Chow, W. Sturhahn, J. Shu, et al., Experimental determination of the elasticity of iron at high pressure. J. Geophys. Res. Solid Earth. 113 (2008). https://doi.org/10.1029/2007JB005229
  197. Z. Mao, J.-F. Lin, J. Liu, A. Alatas, L. Gao, J. Zhao, H.-K. Mao, Sound velocities of Fe and Fe-Si alloy in the Earth’s core. Proc. Natl. Acad. Sci. 109, 10239–10244 (2012). https://doi.org/10.1073/pnas.1207086109ADSCrossRefGoogle Scholar
  198. A.V. Martin, Orientational order of liquids and glasses {\it via} fluctuation diffraction. IUCrJ 4, 24–36 (2017). https://doi.org/10.1107/S2052252516016730CrossRefGoogle Scholar
  199. M. Maschek, S. Rosenkranz, R. Heid, A.H. Said, P. Giraldo-Gallo, I.R. Fisher, F. Weber, Wave-vector-dependent electron-phonon coupling and the charge-density-wave transition in TbT_{3}. Phys. Rev. B. 91, 235146 (2015). https://link.aps.org/doi/10.1103/PhysRevB.91.235146ADSCrossRefGoogle Scholar
  200. M. Maschek, D. Lamago, J.-P. Castellan, A. Bosak, D. Reznik, F. Weber, Polaronic metal phases in La_{0.7}Sr_{0.3}MnO_{3} uncovered by inelastic neutron and x-ray scattering. Phys. Rev. B. 93, 45112 (2016a). https://doi.org/10.1103/PhysRevB.93.045112ADSCrossRefGoogle Scholar
  201. M. Maschek, S. Rosenkranz, R. Hott, R. Heid, M. Merz, D.A. Zocco, A.H. Said, A. Alatas, G. Karapetrov, S. Zhu, et al., Superconductivity and hybrid soft modes in TiSe2. Phys. Rev. B. 94, 214507 (2016b). https://doi.org/10.1103/PhysRevB.94.214507ADSCrossRefGoogle Scholar
  202. C. Masciovecchio, U. Bergmann, M. Krisch, G. Ruocco, F. Sette, R. Verbeni, A perfect crystal X-ray analyser with 1.5 meV energy resolution. Nucl. Inst. Methods B 117, 339–340 (1996a). https://doi.org/10.1016/0168-583X(96)00334-5ADSCrossRefGoogle Scholar
  203. C. Masciovecchio, U. Bergmann, M. Krisch, G. Ruocco, F. Sette, R. Verbeni, A perfect crystal X-ray analyser with meV energy resolution. Nucl. Inst. Methods B 111, 181–186 (1996b). https://doi.org/10.1016/0168-583X(95)01288-5.ADSCrossRefGoogle Scholar
  204. C. Masciovecchio, A. Gessini, S.C. Santucci, Ultraviolet Brillouin scattering as a new tool to investigate disordered systems. J. Non-Crystalline Solids 352, 5126–5129 (2006). http://www.sciencedirect.com/science/article/pii/S0022309306008933ADSCrossRefGoogle Scholar
  205. W.L. McMillan, Transition temperature of strong-coupled sueprconductors. Phys. Rev. 167, 331 (1968)ADSCrossRefGoogle Scholar
  206. H. Miao, D. Ishikawa, R. Heid, M. Le Tacon, G. Fabbris, D. Meyers, G.D. Gu, A.Q.R. Baron, M.P.M. Dean, Incommensurate phonon anomaly and the nature of charge density waves in cuprates. Phys. Rev. X. 8, 11008 (2018). https://link.aps.org/doi/10.1103/PhysRevX.8.011008Google Scholar
  207. A.B. Migdal, No title. Zh. Eksp. Teor. Fiz. 34, 1438 (1958)Google Scholar
  208. A. Migliori, J.L. Sarrao, Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation (Wiley-VCH, New York, 1997)Google Scholar
  209. R. Mittal, R. Heid, A. Bosak, T.R. Forrest, S.L. Chaplot, D. Lamago, D. Reznik, K.-P. Bohnen, Y. Su, N. Kumar, et al., Pressure dependence of phonon modes across the tetragonal to collapsed-tetragonal phase transition in CaFe2As2. Phys. Rev. 81, 144502 (2010). http://link.aps.org/doi/10.1103/PhysRevB.81.144502CrossRefGoogle Scholar
  210. M. Mohr, J. Maultzsch, E. Dobardzic, S. Reich, I. Milosevic, M. Damnjanovic, A. Bosak, M. Krisch, C. Thomsen, Phonon dispersion of graphite by inelastic x-ray scattering. Phys. Rev. B. 76, 35437–35439 (2007). https://doi.org/10.1103/PhysRevB.76.035439CrossRefGoogle Scholar
  211. G. Monaco, M. Nardone, F. Sette, R. Verbeni, Molecular vibrational spectroscopy by inelastic X-ray scattering: experimental determination of the absolute vibrational cross section in liquid nitrogen. Phys. Rev. B. 64. %0 Gene, 212102–212104 (2001). https://doi.org/10.1103/PhysRevB.64.212102ADSCrossRefGoogle Scholar
  212. G. Monaco, A. Cunsolo, G. Pratesi, F. Sette, R. Verbeni, Deep inelastic atomic scattering of X-rays in liquid neon. Phys. Rev. Lett. 88, 227401–227404 (2002). https://doi.org/10.1103/PhysRevLett.88.227401ADSCrossRefGoogle Scholar
  213. K. Mundboth, J. Sutter, D. Laundy, S. Collins, S. Stoupin, Y. Shvyd’ko, Tests and characterization of a laterally graded multilayer Montel mirror. J. Synch. Rad. 21, 16–23 (2014). https://doi.org/10.1107/S1600577513024077CrossRefGoogle Scholar
  214. N. Murai, T. Fukuda, T. Kobayashi, M. Nakajima, H. Uchiyama, D. Ishikawa, S. Tsutsui, H. Nakamura, M. Machida, S. Miyasaka, et al., Effect of magnetism on lattice dynamics in SrFe2As2 using high-resolution inelastic x-ray scattering. Phys. Rev. B. 93, 20301 (2016). https://doi.org/10.1103/PhysRevB.93.020301ADSCrossRefGoogle Scholar
  215. B.M. Murphy, H. Requardt, J. Stettner, J. Serrano, M. Krisch, M. Möller, W. Press, Phonon modes at the 2H-NbSe2 surface observed by grazing incidence inelastic X-ray scattering. Phys. Rev. Lett. 95, 256104–2561044 (2005). https://doi.org/10.1103/PhysRevLett.95.256104ADSCrossRefGoogle Scholar
  216. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39K in magnesium diboride. Nature 410, 63 (2001)ADSCrossRefGoogle Scholar
  217. Y. Nakajima, S. Imada, K. Hirose, T. Komabayashi, H. Ozawa, S. Tateno, S. Tsutsui, Y. Kuwayama, A.Q.R. Baron, Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy. Nat. Commun. 6, 8942 (2015). https://doi.org/10.1038/ncomms9942ADSCrossRefGoogle Scholar
  218. J.L. Niedziela, D. Parshall, K.A. Lokshin, A.S. Sefat, A. Alatas, T. Egami, Phonon softening near the structural transition in BaFe2As2 observed by inelastic x-ray scattering. Phys. Rev. B. 84, 224305 (2011). http://link.aps.org/doi/10.1103/PhysRevB.84.224305ADSCrossRefGoogle Scholar
  219. NSLS-II Conceptual Design Report (2006). http://www.bnl.gov/nsls2/project/CDR/.
  220. C.D. O’Neill, D.A. Sokolov, A. Hermann, A. Bossak, C. Stock, A.D. Huxley, Inelastic x-ray investigation of the ferroelectric transition in SnTe. Phys. Rev. B. 95, 144101 (2017). https://doi.org/10.1103/PhysRevB.95.144101ADSCrossRefGoogle Scholar
  221. F. Occelli, M. Krisch, P. Loubeyre, F. Sette, R. Le Toullec, C. Masciovecchio, J.P. Rueff, Phonon dispersion curves in an argon single crystal at high pressure by inelastic X-ray scattering. Phys. Rev. B. 63, 224306–224308 (2001). https://doi.org/10.1103/PhysRevB.63.224306ADSCrossRefGoogle Scholar
  222. C.A. Occhialini, S.U. Handunkanda, A. Said, S. Trivedi, G.G. Guzmán-Verri, J.N. Hancock, Negative thermal expansion near two structural quantum phase transitions. Phys. Rev. Mater. 1, 70603 (2017). https://doi.org/10.1103/PhysRevMaterials.1.070603CrossRefGoogle Scholar
  223. E. Ohtani, Y. Shibazaki, T. Sakai, K. Mibe, H. Fukui, S. Kamada, S. Tsutsui, A.Q.R. Baron, Sound velocity of hexagonal close-packed iron up to megabar pressures. Geophys. Res. Lett. 40, 50 (2013)CrossRefGoogle Scholar
  224. K. Ohwada, K. Hirota, H. Terauchi, T. Fukuda, S. Tsutsui, A.Q.R. Baron, J. Mizuki, H. Ohwa, N. Yasuda, Intrinsic ferroelectric instability in Pb(In[sub 1/2]Nb[sub 1/2])O[sub 3] revealed by changing B-site randomness: Inelastic x-ray scattering study. Phys. Rev. B. 77, 94136–94138 (2008). http://link.aps.org/abstract/PRB/v77/e094136ADSCrossRefGoogle Scholar
  225. T. Osaka, T. Hiran, M. Yabashi, Y.S. Tono, K. Yamauchi, Y. Inubushi, T. Sato, K. Ogawa, S. Matsuyama, T. Ishikawa, et al., Development of split-delay x-ray optics using Si(220) crystals at SACLA. Proc. SPIE. 9210, 921009 (2014)CrossRefGoogle Scholar
  226. S.R. Park, T. Fukuda, A. Hamann, D. Lamago, L. Pintschovius, M. Fujita, K. Yamada, D. Reznik, Evidence for a charge collective mode associated with superconductivity in copper oxides from neutron and x-ray scattering measurements of La2−xSrxCuO4. Phys. Rev. B. 89, 20506 (2014). http://link.aps.org/doi/10.1103/PhysRevB.89.020506ADSCrossRefGoogle Scholar
  227. D. Parshall, L. Pintschovius, J.L. Niedziela, J.-P. Castellan, D. Lamago, R. Mittal, T. Wolf, D. Reznik, Close correlation between magnetic properties and the soft phonon mode of the structural transition BaFe2As2 and SrFe2As2. Phys. Rev. B. 91, 134426 (2015). http://link.aps.org/doi/10.1103/PhysRevB.91.134426ADSCrossRefGoogle Scholar
  228. F. Perakis, G. Camisasca, T.J. Lane, A. Späh, K.T. Wikfeldt, J.A. Sellberg, F. Lehmkühler, H. Pathak, K.H. Kim, K. Amann-Winkel, et al., Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nat. Commun. 9, 1917 (2018). https://doi.org/10.1038/s41467-018-04330-5ADSCrossRefGoogle Scholar
  229. Z.G. Pinsker, Dynamical Scattering of X-rays in Crystals (Springer, New York, 1978)CrossRefGoogle Scholar
  230. Pintschovius, L., Reichardt, W., Inelastic scattering studies of the lattice vibrations of high Tc compounds, in Physical Properties of High Temperature Superconductors IV, ed. by D. Ginsberg (World Scientific, Singapore, 1994), p. 295Google Scholar
  231. M. Plazanet, A. Beraud, M. Johnson, M. Krisch, H.P. Trommsdorff, Probing vibrational excitations in molecular crystals by inelastic scattering: from neutrons to X-rays. Chem. Phys. 317, 153–158 (2005). https://doi.org/10.1016/j.chemphys.2005.04.040CrossRefGoogle Scholar
  232. R. Pradip, P. Piekarz, A. Bosak, D.G. Merkel, O. Waller, A. Seiler, A.I. Chumakov, R. Rüffer, A.M. Oleś, K. Parlinski, et al., Lattice dynamics of EuO: evidence for giant spin-phonon coupling. Phys. Rev. Lett. 116, 185501 (2016). http://link.aps.org/doi/10.1103/PhysRevLett.116.185501ADSCrossRefGoogle Scholar
  233. J.W. Quilty, S. Lee, A. Yamamoto, S. Tajima, Superconducting gap in MgB2: electronic Raman scattering measurements of single crystals. Phys. Rev. Lett. 88, 87001 (2002)ADSCrossRefGoogle Scholar
  234. S. Raymond, J.P. Rueff, S.M. Shapiro, P. Wochner, F. Sette, P. Lejay, Anomalous lattice properties of the heavy fermion compound CeRu2Si2: an X-ray scattering investigation. Solid State Commun. 118. %0 Gen, 473–477 (2001). https://doi.org/10.1016/s0038-1098(01)00162-4ADSCrossRefGoogle Scholar
  235. S. Raymond, P. Piekarz, J.P. Sanchez, J. Serrano, M. Krisch, B. Janousov, J. Rebizant, N. Metoki, K. Kaneko, P.T. Jochym, et al., Probing the Coulomb interaction of the unconventional superconductor PuCoGa5 by phonon spectroscopy. Phys. Rev. Lett. 96, 237003–237004 (2006). https://doi.org/10.1103/PhysRevLett.96.237003ADSCrossRefGoogle Scholar
  236. H. Reichert, F. Bencivenga, B. Wehinger, M. Krisch, F. Sette, H. Dosch, High-frequency subsurface and bulk dynamics of liquid indium. Phys. Rev. Lett. 98, 96104 (2007). https://doi.org/10.1103/PhysRevLett.98.096104ADSCrossRefGoogle Scholar
  237. Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z. Cai, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, et al., Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx] FeAs. Chinese Phys. Lett. 25, 2215–2216 (2008)ADSCrossRefGoogle Scholar
  238. S. Rennie, E. Lawrence Bright, J.E. Darnbrough, L. Paolasini, A. Bosak, A.D. Smith, N. Mason, G.H. Lander, R. Springell, Study of phonons in irradiated epitaxial thin films of UO_{2}. Phys. Rev. B. 97, 224303 (2018). https://doi.org/10.1103/PhysRevB.97.224303ADSCrossRefGoogle Scholar
  239. H. Requardt, J.E. Lorenzo, P. Monceau, R. Currat, M. Krisch, Dynamics in the charge-density-wave system NbSe3 using inelastic X-ray scattering with meV energy resolution. Phys. Rev. B. 66, 214303–214304 (2002). https://doi.org/10.1103/PhysRevB.66.214303ADSCrossRefGoogle Scholar
  240. D. Reznik, Phonon anomalies and dynamic stripes. Phys. C Supercond. 481, 75–92 (2012). http://www.sciencedirect.com/science/article/pii/S0921453412000469ADSCrossRefGoogle Scholar
  241. D. Reznik, B. Keimer, F. Dogan, I.A. Aksay, q dependence and self energy effects of the plane oxygen vibrations of YBa2Cu3O7. Phys. Rev. Lett. 75, 2396 (1995)ADSCrossRefGoogle Scholar
  242. D. Reznik, L. Pintschovius, M. Ito, S. Iikubo, M. Sato, H. Goka, M. Fujita, K. Yamada, G.D. Gu, J.M. Tranquada, Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature. 440, 1170–1173 (2006). https://doi.org/10.1038/nature04704ADSCrossRefGoogle Scholar
  243. D. Reznik, T. Fukuda, D. Lamago, A.Q.R. Baron, S. Tsutsui, M. Fujita, K. Yamada, q-Dependence of the giant bond-stretching phonon anomaly in the stripe compound La1.48Nd0.4Sr0.12CuO4 measured by IXS. J. Phys. Chem. Solids. 69, 3103 (2008)ADSCrossRefGoogle Scholar
  244. D. Reznik, K. Lokshin, D.C. Mitchell, D. Parshall, W. Dmowski, D. Lamago, R. Heid, K.-P. Bohnen, A.S. Sefat, M.A. McGuire, et al., Phonons in doped and undoped BaFe2As2 investigated by inelastic x-ray scattering. Phys. Rev. B. 80, 214534 (2009). http://link.aps.org/doi/10.1103/PhysRevB.80.214534ADSCrossRefGoogle Scholar
  245. A. Robert, R. Curtis, D. Flath, A. Gray, M. Sikorski, S. Song, V. Srinivasan, D. Stefanescu, The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source. J. Phys. Conf. Ser. 425, 212009 (2013)CrossRefGoogle Scholar
  246. W. Roseker, S. Lee, M. Walther, H. Schulte-Schrepping, H. Franz, A. Gray, M. Sikorski, P. H. Fuoss, G. B. Stephenson, A. Robert, et al., Hard x-ray delay line for x-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS. Proc. SPIE. 8504. (2012)Google Scholar
  247. M. Rotter, P. Rogl, A. Grytsiv, W. Wolf, M. Krisch, A. Mirone, Lattice dynamics of skutterudites: inelastic x-ray scattering on CoSb3. Phys. Rev. B. 77, 144301 (2008a). http://link.aps.org/doi/10.1103/PhysRevB.77.144301ADSCrossRefGoogle Scholar
  248. M. Rotter, M. Tegel, D. Johrendt, Superconductivity at 38∼K in the Iron Arsenide B1xKx Fe2 As2. Phys. Rev. Lett. 101, 107006 (2008b). http://link.aps.org/doi/10.1103/PhysRevLett.101.107006ADSCrossRefGoogle Scholar
  249. J.-P.P. Rueff, M. Calandra, M. D’Astuto, P. Leininger, A. Shukla, A. Bosak, M. Krisch, H. Ishii, Y. Cai, P. Badica, et al., Phonon softening in NaxCoO2·yH2O: implications for the Fermi surface topology and the superconducting state. Phys. Rev. B. 74, 20504 (2006). https://doi.org/10.1103/PhysRevB.74.020504ADSCrossRefGoogle Scholar
  250. M. Ruminy, M.N. Valdez, B. Wehinger, A. Bosak, D.T. Adroja, U. Stuhr, K. Iida, K. Kamazawa, E. Pomjakushina, D. Prabakharan, et al., First-principles calculation and experimental investigation of lattice dynamics in the rare-earth pyrochlores R2Ti2O7 (R=Tb,Dy,Ho). Phys. Rev. B 93, 214308 (2016). https://doi.org/10.1103/PhysRevB.93.214308. https://link.aps.org/doi/10.1103/PhysRevB.93.214308ADSCrossRefGoogle Scholar
  251. A. Said, H. Sinn, R. Divan, New developments in fabrication of high-energy-resolution analyzers for inelastic X-ray spectroscopy. J. Synch. Rad. 18, 492 (2011)CrossRefGoogle Scholar
  252. A.H. Said, T. Gog, M. Wieczorek, X. Huang, D. Casa, E. Kasman, R. Divan, J.H. Kim, High-energy-resolution diced spherical quartz analyzers for resonant inelastic X-ray scattering. J. Synch. Rad. 25, 373–377 (2018). https://doi.org/10.1107/S1600577517018185CrossRefGoogle Scholar
  253. H. Sakai, J. Fujioka, T. Fukuda, D. Okuyama, D. Hashizume, F. Kagawa, H. Nakao, Y. Murakami, T. Arima, A.Q.R. Baron, et al., Displacement-type ferroelectricity with Off-Center Magnetic Ions in Perovskite Sr1-xBaxMnO3. Phys. Rev. Lett. 107, 137601 (2011). http://link.aps.org/doi/10.1103/PhysRevLett.107.137601ADSCrossRefGoogle Scholar
  254. H. Sakai, J. Fujioka, T. Fukuda, M.S. Bahramy, D. Okuyama, R. Arita, T. Arima, A.Q.R. Baron, Y. Taguchi, Y. Tokura, Soft phonon mode coupled with antiferromagnetic order in incipient-ferroelectric Mott insulators Sr1-xBaxMnO3. Phys. Rev. B. 86, 104407 (2012). http://link.aps.org/doi/10.1103/PhysRevB.86.104407ADSCrossRefGoogle Scholar
  255. W. Schülke, Electron Dynamics by Inelastic X-Ray Scattering (Oxford University Press, New York, 2007)Google Scholar
  256. T. Scopigno, R. Di Leonardo, G. Ruocco, A.Q.R. Baron, S. Tsutsui, F. Bossard, S.N. Yannopoulos, High frequency dynamics in a monatomic glass. Phys. Rev. Lett. 92, 25503–25504 (2004). http://link.aps.org/abstract/PRL/v92/e025503ADSCrossRefGoogle Scholar
  257. J.F. Scott, J. Bryson, M.A. Carpenter, J. Herrero-Albillos, M. Itoh, Elastic and anelastic properties of ferroelectric SrTi18O3. Phys. Rev. Lett. 106, 105502 (2011). http://link.aps.org/doi/10.1103/PhysRevLett.106.105502ADSCrossRefGoogle Scholar
  258. I. Sergueev, H.-C. Wille, R.P. Hermann, D. Bessas, Y.V. Shvyd’ko, M. Zajac, R. Rüffer, Milli-electronvolt monochromatization of hard X-rays with a sapphire backscattering monochromator. J. Synch. Rad. 18, 802–810 (2011). https://doi.org/10.1107/S090904951102485XCrossRefGoogle Scholar
  259. J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio, L. Wirtz, Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. Phys. Rev. Lett. 98, 95503–95504 (2007). https://doi.org/10.1103/PhysRevLett.98.095503ADSCrossRefGoogle Scholar
  260. M. Seto, Y. Yoda, S. Kikuta, X.W. Zhang, M. Ando, Observation of nuclear resonant scattering accompanied by phonon excitation using synchrotron radiation. Phys. Rev. Lett. 74, 3828–3831 (1995)ADSCrossRefGoogle Scholar
  261. F. Sette, G. Ruocco, M. Kirsch, U. Bergmann, C. Mascivecchio, V. Mazzacurati, G. Signorelli, R. Verbini, Collective dynamics in water by high energy resolution inelastic X-ray scattering. Phys. Rev. Lett. 75, 850–853 (1995)ADSCrossRefGoogle Scholar
  262. S.M. Shapiro, G. Shirane, J.D. Axe, Measurements of the electron-phonon interaction in Nb by inelastic neutron scattering. Phys. Rev. B. 12, 4899–4908 (1975). http://link.aps.org/doi/10.1103/PhysRevB.12.4899ADSCrossRefGoogle Scholar
  263. Y. Shibazaki, E. Ohtani, H. Fukui, T. Sakai, S. Kamada, D. Ishikawa, S. Tsutsui, A.Q.R. Baron, N. Nishitani, N. Hirao, et al., Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: Implications for the composition of the Earth’s core. Earth Planet. Sci. Lett. 313–314, 79–85 (2012). https://doi.org/10.1016/j.epsl.2011.11.002ADSCrossRefGoogle Scholar
  264. D. Shu, T.S. Toellner, E.E. Alp, Design of a high-resolution high-stability positioning mechanism for crystal optics. To Be Puiblished Proceeding SRI 1999 (1999)Google Scholar
  265. D. Shu, T.S. Toellner, E.E. Alp, Design of a high-resolution high-stability positioning mechanism for crystal optics. AIP Conf. Proc. 521, (2000)Google Scholar
  266. A. Shukla, M. Calandra, M. d’Astuto, M. Lazzeri, F. Mauri, C. Bellin, M. Krisch, J. Karpinski, S.M. Kazakov, J. Jun, et al., Phonon dispersion and lifetimes in MgB2. Cond-Mat/0209064 (2002)Google Scholar
  267. Y. Shvyd’ko, X-Ray Optics: High-Energy-Resolution Application (Springer, New York, 2004)CrossRefGoogle Scholar
  268. Y. Shvyd’ko, Theory of angular-dispersive, imaging hard-x-ray spectrographs. Phys. Rev. A. 91, 53817 (2015). http://link.aps.org/doi/10.1103/PhysRevA.91.053817ADSCrossRefGoogle Scholar
  269. Y. Shvyd’ko, X-ray echo spectroscopy. Phys. Rev. Lett. 116, 80801 (2016). http://link.aps.org/doi/10.1103/PhysRevLett.116.080801ADSCrossRefGoogle Scholar
  270. Y.V. Shvyd’ko, E. Gerdau, Backscattering Mirrors for X-rays and Mössbauer radiation. Hyperfine Interact. 123/124, 741 (1999)CrossRefGoogle Scholar
  271. Y. Shvyd’ko, M. Lerche, U. Kuetgens, H. Rüter, A. Alatas, J. Zhao, X-ray Bragg diffraction in asymmetric backscattering geometry. Phys. Rev. Lett. 97, 235502 (2006). http://link.aps.org/doi/10.1103/PhysRevLett.97.235502ADSCrossRefGoogle Scholar
  272. Y. Shvyd’ko, S. Stoupin, D. Shu, R. Khachatryan, Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays. Phys. Rev. A. 84, 53823 (2011). http://link.aps.org/doi/10.1103/PhysRevA.84.053823ADSCrossRefGoogle Scholar
  273. Y. Shvyd’ko, S. Stoupin, K. Mundboth, J. Kim, Hard-x-ray spectrographs with resolution beyond 100 ueV. Phys. Rev. A. 87, 43835 (2013). http://link.aps.org/doi/10.1103/PhysRevA.87.043835ADSCrossRefGoogle Scholar
  274. Y. Shvyd’ko, S. Stoupin, D. Shu, S.P. Collins, K. Mundboth, J. Sutter, M. Tolkiehn, High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science. Nat Commun. 5, 4219 (2014). https://doi.org/10.1038/ncomms5219ADSCrossRefGoogle Scholar
  275. D.P. Siddons, J.B. Hastings, G. Faigel, A new apparatus for the study of nuclear Bragg scattering. Nucl. Instrum. Methods A266, 329–335 (1988)ADSCrossRefGoogle Scholar
  276. H. Sinn, Spectroscopy with meV energy resolution. J. Phys.:Cond. Matter. 13, 7525 (2001)ADSGoogle Scholar
  277. S.M. Souliou, H. Gretarsson, G. Garbarino, A. Bosak, J. Porras, T. Loew, B. Keimer, M. Le Tacon, Rapid suppression of the charge density wave in YBa_{2}Cu_{3}O_{6.6} under hydrostatic pressure. Phys. Rev. B. 97, 20503 (2018). https://doi.org/10.1103/PhysRevB.97.020503ADSCrossRefGoogle Scholar
  278. L.J. Spalek, S.S. Saxena, C. Panagopoulos, T. Katsufuji, J.A. Schiemer, M.A. Carpenter, Elastic and anelastic relaxations associated with phase transitions in EuTiO3. Phys. Rev. B. 90, 54119 (2014). https://doi.org/10.1103/PhysRevB.90.054119ADSCrossRefGoogle Scholar
  279. G.P. Srivastava, The Physics of Phonons (Adam Hilger, Bristol, 1990)Google Scholar
  280. C. Stassis, M. Bullock, J. Zarestky, P. Canfield, A.I. Goldman, G. Shirane, S.M. Shapiro, Phonon mode coupling in superconducting LuNi2B2C. Phys. Rev. B. 55, R8678–R8681 (1997). http://link.aps.org/doi/10.1103/PhysRevB.55.R8678ADSCrossRefGoogle Scholar
  281. M. Stekiel, T. Nguyen-Thanh, S. Chariton, C. McCammon, A. Bosak, W. Morgenroth, V. Milman, K. Refson, B. Winkler, High pressure elasticity of FeCO3-MgCO3 carbonates. Phys. Earth Planet. Inter. 271, 57–63 (2017). https://doi.org/10.1016/j.pepi.2017.08.004ADSCrossRefGoogle Scholar
  282. W. Steurer, A. Apfolter, M. Koch, W.E. Ernst, E. Søndergård, J.R. Manson, B. Holst, Vibrational excitations of glass observed using helium atom scattering. J. Phys. Condens. Matter. 20, 224003 (2008). http://stacks.iop.org/0953-8984/20/i=22/a=224003ADSCrossRefGoogle Scholar
  283. D. Strauch, B. Dorner, A.A. Ivanov, M. Krisch, J. Serrano, A. Bosak, W. Choyke, B. Stojetz, M. Malorny, Phonons in SiC from INS, IXS, and Ab-initio calculations. Mater. Sci. Forum. 527–529, 689–694 (2006)CrossRefGoogle Scholar
  284. W. Sturhahn, T.S. Toellner, Feasibility of in-line instruments for high-resolution inelastic X-ray scattering. J. Synch. Rad. 18, 229–237 (2011). https://doi.org/10.1107/S0909049510053513CrossRefGoogle Scholar
  285. W. Sturhahn, T.S. Toellner, E.E. Alp, X. Zhang, M. Ando, Y. Yoda, S. Kikuta, M. Seto, C.W. Kimball, B. Dabrowski, Phonon density of states measured by inelastic nuclear resonant scattering. Phys. Rev. Lett. 74, 3832–3835 (1995)ADSCrossRefGoogle Scholar
  286. J.P. Sutter, E.E. Alp, M.Y. Hu, P.L. Lee, H. Sinn, W. Sturhahn, T.S. Toellner, G. Bortel, R. Colella, Multiple-beam x-ray diffraction near exact backscatering. Phys. Rev. B. 63, 94111 (2001)ADSCrossRefGoogle Scholar
  287. J.P. Sutter, A.Q.R. Baron, H. Yamazaki, T. Ishikawa, H. Yamazaki, Examination of Bragg backscattering from crystalline quartz. J. Phys. Chem. Solids. 66, 2306–2309 (2005). https://doi.org/10.1016/j.jpcs.2005.09.044ADSCrossRefGoogle Scholar
  288. J.P. Sutter, A.Q.R. Baron, D. Miwa, Y. Nishino, K. Tamasaku, T. Ishikawa, Nearly perfect large-area quartz: 4 meV resolution for 10 keV photons over 10 cm2. J. Synch. Rad. 13, 278–280 (2006). https://doi.org/10.1107/S0909049506003888CrossRefGoogle Scholar
  289. M. Sutton, Coheren X-ray diffraction, in Third-Generation Hard X-Ray Synchrotron Radiation Sources: Source Properties, Optics, Experimental Techniques, ed. by D.M. Mills (Wiley New York, 2002), pp. 101–123Google Scholar
  290. A.K. Tagantsev, K. Vaideeswaran, S.B. Vakhrushev, A.V. Filimonov, R.G. Burkovsky, A. Shaganov, D. Andronikova, A.I. Rudskoy, A.Q.R. Baron, H. Uchiyama, et al., The origin of antiferroelectricity in PbZrO3. Nat Commun. 4, 2229 (2013). https://doi.org/10.1038/ncomms3229ADSCrossRefGoogle Scholar
  291. A. Tamtögl, P. Kraus, M. Mayrhofer-Reinhartshuber, D. Campi, M. Bernasconi, G. Benedek, W.E. Ernst, Surface and subsurface phonons of Bi(111) measured with helium atom scattering. Phys. Rev. B. 87, 35410 (2013). https://doi.org/10.1103/PhysRevB.87.035410ADSCrossRefGoogle Scholar
  292. S.W. Teitelbaum, T. Henighan, Y. Huang, H. Liu, M.P. Jiang, D. Zhu, M. Chollet, T. Sato, É.D. Murray, S. Fahy, et al. Direct Measurement of Anharmonic Decay Channels of a Coherent Phonon. Phys. Reveiw Lett. 121, 125901 (2018). https://link.aps.org/doi/10.1103/PhysRevLett.121.125901
  293. C. Thomsen, M. Cardona, B. Gegenheimer, R. Liu, A. Simon, Raman study of the phonon anomaly in single-crystal \( YBa_{2}Cu_{3}O_{7-\delta } \) in the presence of a magnetic field. Phys. Rev. B. 37, 9860 (1988)ADSCrossRefGoogle Scholar
  294. Z. Tian, M. Li, Z. Ren, H. Ma, A. Alatas, S.D. Wilson, J. Li, Inelastic x-ray scattering measurements of phonon dispersion and lifetimes in PbTe 1− x Se x alloys. J. Phys. Condens. Matter. 27, 375403 (2015). http://stacks.iop.org/0953-8984/27/i=37/a=375403CrossRefGoogle Scholar
  295. T.S. Toellner, T. Mooney, S. Shastri, E.E. Alp, High energy resolution, high angular acceptance crystal monochromator. Opt. High-Brightness Synchrotron Beamlines SPIE 1, 218–222 (1992)ADSGoogle Scholar
  296. T.S. Toellner, M.Y. Hu, W. Sturhahn, E.E. Alp, J. Zhao, Ultrahigh-resolution x-ray monochromators for elastic and inelastic x-ray scattering studies (abstract) (invited). Rev. Sci. Instrum. 73, 1480 (2002)ADSCrossRefGoogle Scholar
  297. T.S. Toellner, A. Alatas, A.H. Said, Six-reflection meV-monochromator for synchrotron radiation. J. Synch. Rad. 18, 605–611 (2011). https://doi.org/10.1107/S0909049511017535CrossRefGoogle Scholar
  298. S. Tóth, B. Wehinger, K. Rolfs, T. Birol, U. Stuhr, H. Takatsu, K. Kimura, T. Kimura, H.M. Rønnow, C. Rüegg, Electromagnon dispersion probed by inelastic X-ray scattering in LiCrO2. Nat. Commun. 7, 13547 (2016). https://doi.org/10.1038/ncomms13547ADSCrossRefGoogle Scholar
  299. M. Trigo, M. Fuchs, J. Chen, M.P. Jiang, M. Cammarata, S. Fahy, D.M. Fritz, K. Gaffney, S. Ghimire, A. Higginbotham, et al., Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nat Phys. 9, 790–794 (2013). https://doi.org/10.1038/nphys2788CrossRefGoogle Scholar
  300. S. Tsutsui, H. Kobayashi, D. Ishikawa, J.P. Sutter, A.Q.R. Baron, T. Hasegawa, N. Ogita, M. Udagawa, Y. Yoda, H. Onodera, et al., Direct observation of low energy Sm phonon in SmRu4P12. J. Phys. Soc. Jpn. 77(L), 033601 (2008)ADSCrossRefGoogle Scholar
  301. S. Tsutsui, H. Uchiyama, J.P. Sutter, A.Q.R. Baron, M. Mizumaki, N. Kawamura, T. Uruga, H. Sugawara, J.-I. Yamaura, A. Ochiai, et al., Atomic dynamics of low-lying rare-earth guest modes in heavy fermion filled skutterudites ROs4Sb12 (R = light rare-earth). Phys. Rev. B. 86, 13 (2012). https://doi.org/10.1103/PhysRevB.86.195115CrossRefGoogle Scholar
  302. H. Uchiyama, A.Q.R. Baron, S. Tsutsui, Y. Tanaka, W.Z. Hu, A. Yamamoto, S. Tajima, Y. Endoh, Softening of Cu-O bond stretching phonons in tetragonal HgBa[sub 2]CuO[sub 4 + delta]. Phys. Rev. Lett. 92, 197004–197005 (2004). http://link.aps.org/abstract/PRL/v92/e197005ADSCrossRefGoogle Scholar
  303. H. Uchiyama, S. Tsutsui, A.Q.R. Baron, Effects of anisotropic charge on transverse optical phonons in NiO: Inelastic x-ray scattering spectroscopy study. Phys. Rev. B. 81, 241103 (2010). https://doi.org/10.1103/PhysRevB.81.241103ADSCrossRefGoogle Scholar
  304. H. Uchiyama, Y. Oshima, R. Patterson, S. Iwamoto, J. Shiomi, K. Shimamura, Phonon lifetime observation in epitaxial ScN film with inelastic X-ray scattering spectroscopy. Phys. Rev. Lett. 120, 235901 (2018). https://doi.org/10.1103/PhysRevLett.120.235901ADSCrossRefGoogle Scholar
  305. K. Umemoto, K. Hirose, S. Imada, Y. Nakajima, T. Komabayashi, S. Tsutsui, A.Q.R. Baron, Liquid iron-sulfur alloys at outer core conditions by first-principles calculations. Geophys. Res. Lett. 41, 6712–6717 (2014). https://doi.org/10.1002/2014GL061233ADSCrossRefGoogle Scholar
  306. M. Upton, A. Walters, C. Howard, K. Rahnejat, M. Ellerby, J. Hill, D. McMorrow, A. Alatas, B. Leu, W. Ku, Phonons in superconducting CaC6 studied via inelastic x-ray scattering. Phys. Rev. B. 76, 220501 (2007). https://doi.org/10.1103/PhysRevB.76.220501ADSCrossRefGoogle Scholar
  307. M.H. Upton, T.R. Forrest, A.C. Walters, C.A. Howard, M. Ellerby, A.H. Said, D.F. McMorrow, Phonons and superconductivity in YbC6 and related compounds. Phys. Rev. B. 82, 134515 (2010). http://link.aps.org/doi/10.1103/PhysRevB.82.134515ADSCrossRefGoogle Scholar
  308. R. Verbeni, C. Henriquet, D. Gambetti, K. Martel, M. Krisch, G. Monaco, F. Sette, Development of an asymmetrically-cut backscattering monochromator for very high energy resolution inelastic X-ray scattering. ESRF Highlights. Methods, 03. (2003.) http://www.esrf.eu/UsersAndScience/Publications/Highlights/2003/Methods/Methods03
  309. R. Verbeni, M. Kocsis, S. Huotari, M. Krisch, G. Monaco, F. Sette, G. Vanko, Advances in crystal analyzers for inelastic X-ray scattering. J. Phys. Chem. Solids. 66, 2299–2305 (2005). https://doi.org/10.1016/j.jpcs.2005.09.079ADSCrossRefGoogle Scholar
  310. D.J. Voneshen, K. Refson, E. Borissenko, M. Krisch, A. Bosak, A. Piovano, E. Cemal, M. Enderle, M.J. Gutmann, M. Hoesch, et al., Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate. Nat Mater. 12, 1028–1032 (2013). https://doi.org/10.1038/nmat3739ADSCrossRefGoogle Scholar
  311. Y. Wakabayashi, D. Nakajima, Y. Ishiguro, K. Kimura, T. Kimura, S. Tsutsui, A.Q.R. Baron, K. Hayashi, N. Happo, S. Hosokawa, et al., Chemical and orbital fluctuations in Ba3CuSb2 O9. Phys. Rev. B. 93, 245117 (2016). https://doi.org/10.1103/PhysRevB.93.245117ADSCrossRefGoogle Scholar
  312. K. Wakiya, T. Onimaru, S. Tsutsui, T. Hasegawa, K.T. Matsumoto, N. Nagasawa, A.Q.R. Baron, N. Ogita, M. Udagawa, T. Takabatake, Low-energy optical phonon modes in the caged compound LaRu2Zn20. Phys. Rev. B. 93, 64105 (2016). https://doi.org/10.1103/PhysRevB.93.064105ADSCrossRefGoogle Scholar
  313. O. Waller, P. Piekarz, A. Bosak, P.T. Jochym, S. Ibrahimkutty, A. Seiler, M. Krisch, T. Baumbach, K. Parlinski, S. Stankov, Lattice dynamics of neodymium: influence of 4f electron correlations. Phys. Rev. B. 94, 14303 (2016). http://link.aps.org/doi/10.1103/PhysRevB.94.014303ADSCrossRefGoogle Scholar
  314. A.C. Walters, C.A. Howard, M.H. Upton, M.P.M. Dean, A. Alatas, B.M. Leu, M. Ellerby, D.F. McMorrow, J.P. Hill, M. Calandra, et al., Comparative study of the phonons in nonsuperconducting BaC6 and superconducting CaC6 using inelastic x-ray scattering. Phys. Rev. B. 84, 14511 (2011). http://link.aps.org/doi/10.1103/PhysRevB.84.014511ADSCrossRefGoogle Scholar
  315. F. Weber, A. Kreyssig, L. Pintschovius, R. Heid, W. Reichardt, D. Reznik, O. Stockert, K. Hradil, Direct observation of the superconducting gap in phonon spectra. Phys. Rev. Lett. 101, 237002 (2008). http://link.aps.org/doi/10.1103/PhysRevLett.101.237002ADSCrossRefGoogle Scholar
  316. F. Weber, S. Rosenkranz, J.-P. Castellan, R. Osborn, R. Hott, R. Heid, K.-P. Bohnen, T. Egami, A.H. Said, D. Reznik, Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Phys. Rev. Lett. 107, 107403 (2011). https://doi.org/10.1103/PhysRevLett.107.107403ADSCrossRefGoogle Scholar
  317. F. Weber, R. Hott, R. Heid, K.-P. Bohnen, S. Rosenkranz, J.-P. Castellan, R. Osborn, A.H. Said, B.M. Leu, D. Reznik, Optical phonons and the soft mode in 2H-NbSe2. Phys. Rev. B. 87, 245111 (2013). https://doi.org/10.1103/PhysRevB.87.245111ADSCrossRefGoogle Scholar
  318. B. Wehinger, M. Krisch, H. Reichert, High-frequency dynamics in the near-surface region studied by inelastic x-ray scattering: the case of liquid indium. New J. Phys 13, 023021 (2011). http://iopscience.iop.org/1367-2630/13/2/023021/fulltext/ADSCrossRefGoogle Scholar
  319. B. Wehinger, A. Bosak, P.T. Jochym, Soft phonon modes in rutile TiO2. Phys. Rev. B. 93, 14303 (2016). http://link.aps.org/doi/10.1103/PhysRevB.93.014303ADSCrossRefGoogle Scholar
  320. B. Wehinger, A. Mirone, M. Krisch, A. Bosak, Full elasticity tensor from thermal diffuse scattering. Phys. Rev. Lett. 118, 35502 (2017). http://link.aps.org/doi/10.1103/PhysRevLett.118.035502ADSCrossRefGoogle Scholar
  321. S.-C. Weng, R. Xu, A.H. Said, B.M. Leu, Y. Ding, H. Hong, X. Fang, M.Y. Chou, A. Bosak, P. Abbamonte, et al., Pressure-induced antiferrodistortive phase transition in SrTiO 3: common scaling of soft-mode with pressure and temperature. EPL (Europhysics Lett) 107, 36006 (2014). http://stacks.iop.org/0295-5075/107/i=3/a=36006ADSCrossRefGoogle Scholar
  322. B. Winkler, A. Friedrich, D.J. Wilson, E. Haussühl, M. Krisch, A. Bosak, K. Refson, V. Milman, Dispersion relation of an OH-stretching vibration from inelastic X-ray scattering. Phys. Rev. Lett. 101, 65501 (2008). http://link.aps.org/doi/10.1103/PhysRevLett.101.065501ADSCrossRefGoogle Scholar
  323. J. Wong, M. Krisch, D.L. Farber, F. Occelli, A.J. Schwartz, T.C. Chiang, M. Wall, C. Boro, R. Xu, Phonon dispersion of fcc delta-plutonium-gallium by inelastic X-ray scattering. Science 301(80), 1078–1080 (2003). https://doi.org/10.1126/science.1087179ADSCrossRefGoogle Scholar
  324. J. Wong, M. Krisch, D.L. Farber, F. Occelli, R. Xu, T.C. Chiang, D. Clatterbuck, A.J. Schwartz, M. Wall, C. Boro, Crystal dynamics of delta fcc Pu-Ga alloy by high-resolution inelastic X-ray scattering. Phys. Rev. B. 72, 64112–64115 (2005). https://doi.org/10.1103/PhysRevB.72.064115CrossRefGoogle Scholar
  325. H. Xia, R. Patterson, S. Smyth, Y. Feng, S. Chung, Y. Zhang, S. Shrestha, S. Huang, H. Uchiyama, S. Tsutsui, et al., Inelastic X-ray scattering measurements of III-V multiple quantum wells. Appl. Phys. Lett. 110 (2017). https://doi.org/10.1063/1.4974478ADSCrossRefGoogle Scholar
  326. R. Xu, T.C. Chiang, Determination of phonon dispersion relations by X-ray thermal diffuse scattering. Zeitschrift Fur Krist 220, 1009–1016 (2005)ADSCrossRefGoogle Scholar
  327. M. Yabashi, K. Tamasaku, S. Kikuta, T. Ishikawa, X-ray monochromator with an energy resolution of 8×10 −9 at 14.41 keV. Rev. Sci. Instrum. 72, 4080 (2001)ADSCrossRefGoogle Scholar
  328. H. Yavas, E. Ercan Alp, H. Sinn, A. Alatas, A.H. Said, Y. Shvyd’ko, T. Toellner, R. Khachatryan, S.J.L. Billinge, M. Zahid Hasan, et al., Sapphire analyzers for high-resolution X-ray spectroscopy. Nuc. Inst. Methods A. 582, 149–151 (2007).http://www.sciencedirect.com/science/article/B6TJM-4PDC17C-W/2/973612407121a98f86bb1c0a9bddbe36ADSCrossRefGoogle Scholar
  329. H. Yavaş, J.P. Sutter, T. Gog, H.-C. Wille, A.Q.R. Baron, New materials for high-energy-resolution X-ray optics. MRS Bull. 42, 424–429 (2017). https://doi.org/10.1557/mrs.2017.94CrossRefGoogle Scholar
  330. Yildirim, T. G¸lseren, O., Lynn, J. W., Brown, C. M., Udovic, T. J., Huang, Q., Rogado, N., Regan, K. A., Hayward, M. A., Slusky, J. S., et al. (2001). Giant anharmonicity and nonlinear electron-phonon coupling in MgB_{2}: a combined first-principles calculation and neutron scattering study Phys. Rev. Lett. 87, 37001. http://link.aps.org/abstract/PRL/v87/e037001.ADSCrossRefGoogle Scholar
  331. A. Yoneda, H. Fukui, F. Xu, A. Nakatsuka, A. Yoshiasa, Y. Seto, K. Ono, S. Tsutsui, H. Uchiyama, A.Q.R. Baron, “Elastic anisotropy of experimental analogues of perovskite and post-perovskite help to interpret D” diversity. Nat. Commun. 5, 3453 (2014). https://doi.org/10.1038%2Fncomms4453
  332. A. Yoneda, H. Fukui, H. Gomi, S. Kamada, L. Xie, N. Hirao, H. Uchiyama, S. Tsutsui, A.Q.R. Baron, Single crystal elasticity of gold up to ∼20 GPa: bulk modulus anomaly and implication for a primary pressure scale. Jpn. J. Appl. Phys. 56, 95801 (2017). http://stacks.iop.org/1347-4065/56/i=9/a=095801CrossRefGoogle Scholar
  333. M. Zhernenkov, D. Bolmatov, D. Soloviov, K. Zhernenkov, B.P. Toperverg, A. Cunsolo, A. Bosak, Y.Q. Cai, Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations. Nat. Commun. 7, 11575 (2016). https://doi.org/10.1038/ncomms11575ADSCrossRefGoogle Scholar
  334. D. Zhu, A. Robert, T. Henighan, H.T. Lemke, M. Chollet, J.M. Glownia, D.A. Reis, M. Trigo, Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering. Phys. Rev. B. 92, 54303 (2015). http://link.aps.org/doi/10.1103/PhysRevB.92.054303ADSCrossRefGoogle Scholar
  335. D.A. Zocco, S. Krannich, R. Heid, K.-P. Bohnen, T. Wolf, T. Forrest, A. Bosak, F. Weber, Lattice dynamical properties of superconducting SrPt3P studied via inelastic x-ray scattering and density functional perturbation theory. Phys. Rev. B. 92, 220504 (2015). https://doi.org/10.1103/PhysRevB.92.220504ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Materials Dynamics LaboratoryRIKEN SPring-8 Center, RIKENSayoJapan

Personalised recommendations