Self-Seeded Free-Electron Lasers

  • Gianluca  Geloni
Living reference work entry


Self-seeding is an active filtering method for Free-Electron Lasers (FELs) enabling the production of nearly Fourier-limited pulses in the X-ray frequency range where external seeding is not available. Schematically, it is composed by three parts: a Self-Amplified Spontaneous Emission (SASE) FEL working in the linear regime, a monochromator, and an FEL amplifier. Active filtering is achieved by letting the FEL pulse produced in the SASE FEL through the monochromator, while the electron beam is sent through a bypass, and its microbunching is destroyed due to dispersion. The filtered SASE pulse, serving as a seed, is recombined with the electron beam at the entrance of the FEL amplifier part. It is then amplified up to saturation and possibly beyond via post-saturation tapering. This allows for the production of high-brightness, nearly single-mode FEL pulses. The technique has been or will be implemented in a number of X-ray FEL (XFEL) facilities under operation or in the construction phase. In this chapter, we review the principle of self-seeding, its practical realizations, and related techniques.


Self-seeding, Longitudinal coherence, Single-mode FEL, Tapering 



I am grateful to Evgeni Saldin (DESY) for the careful reading of the manuscript and his continuous advice. I thank Serguei Molodtsov (European XFEL) for his interest in this work and his support.


  1. W. Ackermann et al., Nat. Photonics 1, 336–342 (2007)CrossRefADSGoogle Scholar
  2. M. Altarelli et al. (eds.), XFEL, The European X-ray free-electron laser. Technical design report, DESY 2006-097 (2006). Fulltext available at
  3. J. Amann et al., Nat. Photonics 6, 693 (2012)CrossRefADSGoogle Scholar
  4. A. Bohm, Quantum Mechanics (Springer, New York, 1979)CrossRefzbMATHGoogle Scholar
  5. R. Bonifacio, C. Pellegrini, L. Narducci, Opt. Commun. 50, 373 (1984)CrossRefADSGoogle Scholar
  6. M. Cornacchia et al., J. Synchrotron Radiat. 11, 227 (2004)CrossRefGoogle Scholar
  7. F. Curbis et al., Simulation studies for an X-ray FEL based on an extension of the MAX IV linac, in Proceedings of the 2013 FEL Conference, New York, WEPSO07 (2013)Google Scholar
  8. F.-J. Decker et al., Improving and maintaining FEL beam stability of the LCLS, in Proceedings of the 2014 IPAC Conference, Dresden, THPRO035 (2014)Google Scholar
  9. W. Decking and V. Blank., Design and construction of hard X-ray self-seeding setups for the European XFEL (XFELSEED), coordinated Russian-German project in the framework of the ‘Ioffe-Röntgen’ cooperation (2014)Google Scholar
  10. Y. Ding, Z. Huang, R. Ruth, Phys. Rev. ST Accel. Beams 13, 060703 (2010)CrossRefADSGoogle Scholar
  11. Y. Ding et al., Phys. Rev. Lett. 109, 254802 (2012)CrossRefADSGoogle Scholar
  12. P. Emma et al., Phys. Rev. Lett. 92, 074801-1 (2004a)CrossRefADSGoogle Scholar
  13. P. Emma, M. Borland, Z. Huang, Femtosecond and Subfemtosecond X-ray pulses from a self-amplified spontaneous-emission-based free-electron laser, in Proceedings of the 2004 FEL Conference, Trieste, TUBIS01 (2004b)Google Scholar
  14. P. Emma et al., Nat. Photonics 4, 641 (2010)CrossRefADSGoogle Scholar
  15. C. Emma et al., Phys. Rev. ST AB 17, 110701 (2014)ADSGoogle Scholar
  16. U. Fano, Phys. Rev. 124, 6 (1961)CrossRefGoogle Scholar
  17. U. Fano, A.R.P. Rau, Atomic Collisions and Spectra (Academic, Orlando, 1986)Google Scholar
  18. W. Fawley et al., NIM A 483, 537 (2002)CrossRefADSGoogle Scholar
  19. W.M. Fawley et al., Toward TW-level LCLS radiation pulses, in Proceedings of the FEL 2011 Conference, Shanghai, TUOA4 (2011)Google Scholar
  20. J. Feldhaus et al., Opt. Commun. 140, 341 (1997)CrossRefADSGoogle Scholar
  21. Y. Feng, J. Hastings, P. Heimann, M. Rowen, J. Krzywinski, J. Wu, X-ray optics for soft X-ray self-seeding the LCLS-II, in Proceedings of the 2010 FEL Conference, Malmo, TUBP10 (2010)Google Scholar
  22. Y. Feng et al., System design for self-seeding the LCLS at soft X-ray energies, in Proceedings of the 2012 FEL Conference, Nara, TUOBI01 (2012)Google Scholar
  23. G. Geloni, V. Kocharyan, E. Saldin, Ultrafast X-ray pulse measurement method, DESY 10-008 (2008). Fulltext available at
  24. G. Geloni, V. Kocharyan, E. Saldin, Scheme for generation of fully coherent, TW power level hard x-ray pulses from baseline undulators at the European XFEL, DESY 10-108 (2010a). Fulltext available at
  25. G. Geloni, V. Kocharyan, E. Saldin, Scheme for generation of highly monochromatic X-rays from a baseline XFEL undulator, DESY 10-033 (2010b). Fulltext available at
  26. G. Geloni, V. Kocharyan, E. Saldin, Cost-effective way to enhance the capabilities of the LCLS baseline, DESY 10-133 (2010c). Fulltext available at
  27. G. Geloni, V. Kocharyan, E. Saldin, Scheme for femtosecond-resolution pump-probe experiments at XFELs with two-color ten GW-level X-ray pulses, DESY-10-004 (2010d). Fulltext available at
  28. G. Geloni, V. Kocharyan, E. Saldin, Self-seeded operation of the LCLS hard X-ray FEL in the long-bunch mode, DESY 10-239 (2010e). Fulltext available at
  29. G. Geloni, V. Kocharyan, E. Saldin, J. Modern Opt. 58, 1391 (2011a)CrossRefADSGoogle Scholar
  30. G. Geloni, V. Kocharyan, E. Saldin, Production of transform-limited X-ray pulses through self-seeding at the European X-ray FEL, DESY 11-165 (2011b). Fulltext available at
  31. G. Geloni, V. Kocharyan, E. Saldin, Opt. Commun. 284, 3348 (2011c)CrossRefADSGoogle Scholar
  32. G. Geloni, V. Kocharyan, E. Saldin, Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs, DESY 11-049 (2011d). Fulltext available at
  33. G. Geloni, V. Kocharyan, E. Saldin, Gas-filled cell as a narrow bandwidth bandpass filter in the VUV wavelength range, DESY 11-055 (2011d). Fulltext available at
  34. G. Geloni et al., Wake monochromator in asymmetric and symmetric Bragg and Laue geometry for self-seeding the European XFEL, DESY 13-013 (2013). Fulltext available at
  35. O. Grimm, K. Klose, S. Schreiber, Double-pulse generation with the FLASH injector laser for pump-probe experiments, in Proceedings of EPAC 2006 Conference, Edinburgh, THPCH150 (2006)Google Scholar
  36. T. Hara et al., Nat. Commun. (2013). doi:10.1038/ncomms3919Google Scholar
  37. J. Harries et al., J. Phys. B: At. Mol. Opt. Phys. 46, 164021 (2013)CrossRefADSGoogle Scholar
  38. T. Inagaki et al., Hard X-ray self-seeding setup and results at SACLA, in Proceedings of the 2014 FEL Conference, Basel, TUC01 (2014)Google Scholar
  39. T. Ishikawa et al., Nat. Photonics 6, 540 (2012)MathSciNetCrossRefADSGoogle Scholar
  40. Y. Jiao et al., Phys. Rev. ST Accel. Beams 15, 050704 (2012)CrossRefADSGoogle Scholar
  41. H.-S. Kang, Current status of PAL-XFEL project, in Proceedings of the 2014 FEL Conference, Basel, WEODB103 (2014)Google Scholar
  42. I.S. Ko, J.-H. Han, Current status of PAL-XFEL, in Proceedings of the 27th Linear Accelerator Conference, Geneva, MOIOB04 (2014)Google Scholar
  43. A. Kondratenko, E. Saldin, Part. Accel. 10, 207 (1980)Google Scholar
  44. H.A. Kramers, La diffusion de la lumière par les atomes, in Atti del Congresso Internazionale dei Fisici, 2, 545 (1927)Google Scholar
  45. N.M. Kroll, P. Morton, M.N. Rosenbluth, IEEE J. Quantum Electron. QE-17, 1436 (1981)CrossRefADSGoogle Scholar
  46. R. de L. Kronig, J. Opt. Soc. Am. 12, 547–557 (1926)Google Scholar
  47. A. Lin, J.M. Dawson, Phys. Rev. Lett. 42, 2172 (1986)Google Scholar
  48. R.R. Lindberg, Y.V. Shvydko, Phys. Rev. ST Accel. Beams 15, 050706 (2012)CrossRefADSGoogle Scholar
  49. V. Lucarini et al., Kramers-Kronig Relations in Optical Materials Research, (Springer, Berlin/Heidelberg 2004)Google Scholar
  50. A. Lutman et al., J. Phys. A: Math. Theor. 42, 045202 (2009)MathSciNetCrossRefADSGoogle Scholar
  51. A.A. Lutman et al., Phys. Rev. Lett. 110, 134801 (2013)CrossRefADSGoogle Scholar
  52. A. Lutman et al., Phys. Rev. Lett. 113, 254801 (2014)CrossRefADSGoogle Scholar
  53. A. Marinelli et al., Nat. Commun. (2015). doi:10.1038/ncomms7369Google Scholar
  54. H. Morgan, D. Hederer, Phys. Rev. A 29, 4 (1984)CrossRefGoogle Scholar
  55. T.J. Orzechovski et al., Phys. Rev. Lett. 57, 2172 (1986)CrossRefADSGoogle Scholar
  56. E. Prat, S. Reiche, Self-seeding design for SwissFEL, in Proceedings of the 2013 FEL Conference, New York, WEPSO5 (2013)Google Scholar
  57. D. Ratner et al., Phys. Rev. Lett. 114, 054801 (2015)CrossRefADSGoogle Scholar
  58. T. Raubenheimer, The LCLS-II, a new FEL facility at SLAC, in Proceedings of the 2014 FEL Conference, Basel, WEB001 (2014)Google Scholar
  59. E. Saldin, E. Schneidmiller, M. Yurkov, The Physics of Free-Electron Lasers (Springer, Berlin, 1999)Google Scholar
  60. E. Saldin, E. Schneidmiller, Yu. Shvyd’ko, M. Yurkov, NIM A 475, 357 (2001)Google Scholar
  61. S. Serkez et al., Phys. Rev. ST AB 18, 030708 (2015)ADSGoogle Scholar
  62. D. Shu et al., J. Phys.: Conf. Ser. 425, 052004 (2013)ADSGoogle Scholar
  63. Y. Shvydko, R. Lindberg, Phys. Rev. ST Accel. Beams 15, 100702 (2012)CrossRefADSGoogle Scholar
  64. P. Sprangle, C.M. Tang, W.M. Manheimer, Phys. Rev. Lett. 43 1932 (1979)CrossRefADSGoogle Scholar
  65. R. Ganter et al. (eds.), SwissFEL conceptual design report, PSI Bericht Nr. 10-04 (2012)Google Scholar
  66. J. Toll, Phys. Rev. 104, 6 (1956)MathSciNetCrossRefGoogle Scholar
  67. R. Treusch, W. Brefeld, J. Feldhaus, U. Hahn, The seeding project for the FEL in TTF phase II. Annual report (2001)Google Scholar
  68. X. Wang et al., Phys. Rev. Lett. 103, 154801 (2009)CrossRefADSGoogle Scholar
  69. J. Welch, Seeding at LCLS FEL, Joint DESY and University of Hamburg Accelerator Physics Seminar, 5 Feb 2013, DESY Hamburg (2013),
  70. J. Wu, Recent experimental and theoretical results on tapering for high intensity extraction, in Workshop on Advanced X-Ray FEL Development, Hamburg (2014),
  71. J. Wu et al., Staged self-seeding scheme for narrow bandwidth, ultra-short X-ray harmonic generation free electron laser at LCLS, in Proceedings of the 2010 FEL Conference, Malmo, TUPB08 (2010)Google Scholar
  72. J. Wu et al., Simulation of the hard X-ray self-seeding FEL at LCLS, in Proceedings of the 2011 FEL Conference, Shanghai, MOPB09 (2011)Google Scholar
  73. I. Zagorodnov, Beam dynamics simulations for XFEL (2011),
  74. D. Zhu et al., Appl. Phys. Lett. 101, 034103 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.European XFEL GmbHHamburgGermany

Personalised recommendations