High Speed Imaging and Spectroscopy with Low Energy X-Rays

Living reference work entry

Later version available View entry history

Abstract

Counting, imaging, and spectroscopic measurements of X-rays at low energies used in synchrotron and Free Electron Laser (FEL) science (30 eV up to 2 keV) all require detectors with unique properties. As the penetration depth of low-energy X-rays in, for instance, silicon in the above energy range varies from 40 nm to \(10\,\upmu \mathrm{m}\), special attention must be given to the properties of the radiation entrance window. And because the number of generated signal charges (electron-hole pairs) is low (approximately 27 signal charges for 100 eV and 540 for 2 keV), the detector systems must be operated with very low electronic noise. This is especially important if standard imaging and spectroscopy are to be performed simultaneously, at low-signal-level detection, in the presence of experimental and instrument background radiation. As the local photon intensities per unit area can be as high as 105 X-rays/s/pixel, long-term stability, especially radiation hardness, is an important requirement. Given these requirements for readout frame rates below 1 kHz, charge-coupled devices (CCDs) have proven their usefulness in experiments at X-ray Free Electron Laser sources. Two types of CCDs will be described: MOSCCDs (Metal Oxide Semiconductor) and pnCCDs. The basic functional principles will be shown as well as the achieved performance figures, as demonstrated in real experiments. Next, the physical limitations of the measurement precision will be discussed. Finally, attention will be given to some options for future CCD architectures and operations and a trade-off between CCDs and CMOS active pixel sensors.

Keywords

Active pixel sensor ASIC amplifier Back illumination CAMP Charge handling capacity DePFET Dynamic range Energy resolution Fully sensitive depleted LAMP MOSCCD pnCCD Position resolution Parallel readout Quantum efficiency Radiation hardness Readout noise Readout speed Sideward depletion X-ray CCD X-ray imaging X-ray spectroscopy 

Notes

Acknowledgements

Experimental results shown here are from devices which have been designed, fabricated, tested, and operated by PNSensor. Special thanks go to Robert Hartmann who improved the system over the years. The support of all physicists, technicians, and engineers of PNSensor and PNDetector is very much appreciated. The contribution of the Solid State Physics Group of the University of Siegen is acknowledged. I am grateful to Peter Denes (LBL) who supplied the input for the MOSCCD part. The discussions and support of Julia Schmidt (PNSensor) and Jeff Davis (PNDetector) were important for the quality of the paper.

References

  1. A. Abboud, S. Send, R. Hartmann et al., Applications of an energy-dispersive pnCCD for X-ray reflectivity: investigation of interdiffusion in Fe-Pt multilayers. Phys. Status Solidi (a), 208(11), 2601–2607 (2011)Google Scholar
  2. A. Abboud, S. Send, N. Pashniak et al., Sub-pixel resolution of a pnCCD for X-ray white beam applications. J. Instrum. 8(05), article id. P05005 (2013)Google Scholar
  3. C. Brönnimann, Hybrid pixel photon counting X-ray detectors for synchrotron radiation. in Synchrotron Light Sources and Free-Electron Lasers, ed. by E. Jaeschke, S. Khan, J.R. Schneider, J.B. Hastings (Springer, Cham, 2015)Google Scholar
  4. W. Butler, G. Lutz et al., Low-noise, low power monolithic multiplexing readout electronics for silicon strip detectors. Nucl. Instrum. Methods A273, 778–783 (1988)CrossRefADSGoogle Scholar
  5. P. Denes, D. Doering, H. Padmore et al., A fast, direct x-ray detection charge-coupled device. Rev. Sci. Instrum. 80, 083302 (2009)CrossRefADSGoogle Scholar
  6. E. Gatti, P. Rehak, Semiconductor drift chamber – an application of a novel charge transport scheme. NIMA 225, 608–614 (1983)ADSGoogle Scholar
  7. E. Gatti, P. Rehak, J. Walton, Silicon drift chambers – first results and optimum processing of signals. NIMA 226, 129–141 (1984)CrossRefADSGoogle Scholar
  8. H. Graafsma, Integrating pixel-array detectors for storage ring and Free-Electron Laser applications in Synchrotron Light Sources and Free-Electron Lasers, ed. by E. Jaeschke, S. Khan, J.R. Schneider, J.B. Hastings (Springer, Cham, 2015)Google Scholar
  9. S. Granato, R. Andritschke, J. Elbs et al., Characterization of eROSITA PNCCDs. IEEE TNS 60(4), 3150–3157 (2013)Google Scholar
  10. N. Gehrels, G. Chincarini, P. Giommi et al., The swift gamma-ray burst mission. Astrophys. J. 611(2), 1005–1020 (2004)CrossRefADSGoogle Scholar
  11. D. Groom, S. Holland, N. Pallaio et al., Back-illuminated, fully-depleted CCD image sensors for use in optical and near-IR astronomy. Nucl. Instrum. Methods A 442(1–3), 216–222 (2000)CrossRefADSGoogle Scholar
  12. R. Hartmann, D. Hauff, P. Lechner et al., Low energy response of silicon pn-junction detectors. NIMA 377(2,3), 191–197 (1996)Google Scholar
  13. R. Hartmann, K.-H. Stephan, L. Strüder, The quantum effciency of pn-detectors from the near infrared to the soft X-ray region. NIMA 439, 216–221 (2000)CrossRefADSGoogle Scholar
  14. S. Hillert, R. Ischebeck, U. Müller et al., Test results on the silicon pixel detector for the TTF-FEL beam trajectory monitor. NIMA 458(3), 710–719 (2001)CrossRefADSGoogle Scholar
  15. F. Jansen, D. Lumb, B. Altieri et al., XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001)CrossRefGoogle Scholar
  16. G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, Hoboken, 2010)Google Scholar
  17. W. Leitenberger, R. Hartmann, U. Pietsch et al., Application of a pnCCD in X-ray diffraction: a three-dimensional X-ray detector. J. Synchrotron. Radiat. 15, 449 (2008)CrossRefGoogle Scholar
  18. G. Lutz, Semiconductor Radiation Detectors (Springer, Heidelberg, 2007)CrossRefGoogle Scholar
  19. P. Majewski, S. Aschauer, F. Aschauer et al., Calibration measurements on the DEPFET Detectors for the MIXS instrument on BepiColombo. IEEE TNS 59(5), 2479–2486 (2012)Google Scholar
  20. P. Majewski, S. Aschauer, F. Aschauer et al., Calibration measurements on the DEPFET Detectors for the MIXS instrument on BepiColombo. Exp. Astron. 37(3), 525–538 (2014)CrossRefADSGoogle Scholar
  21. K. Mitsuda, M. Bautz, H. Inoue et al., The X-ray observatory Suzaku. PASJ 59(SP1), 1–7 (2007)Google Scholar
  22. K. Müller, H. Ryll, I. Ordavo et al., Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device. Appl. Phys. Lett. 101(21), id. 212110 (2012)Google Scholar
  23. I. Ordavo, S. Ihle, V. Arkadiev et al., A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurement. NIMA 654(1), 250–257 (2011)CrossRefADSGoogle Scholar
  24. H. Philipp, M. Hromalik, M. Tate et al., Pixel array detector for X-ray free electron laser experiments. Nucl. Instrum. Methods A 649(1), 67–69 (2011)CrossRefADSGoogle Scholar
  25. U. Pietsch, S. Send, A. Abboud et al., Application of energy-dispersive pnCCD detector in material science using hard X-rays. To be published in TMS (2015)Google Scholar
  26. M. Porro, L. Andricek, L. Bombelli et al., Expected performance of the DePFET sensor with signal compression: a large format X-ray imager with mega-frame readout capability for the European XFEL. Nucl. Instrum. Methods A 624, 509–519 (2010)CrossRefADSGoogle Scholar
  27. M. Porro, D. Bianchi, G. De Vita et al., VERITAS: A 128-channel ASIC for the readout of pnCCDs and DEPFET arrays for X-ray imaging, spectroscopy and X-ray FEL applications. Experimental results and new designs, in Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Valencia (IEEE, 2013). IEEE Trans. Nucl. Sci. 60(1), 446–455Google Scholar
  28. P. Predehl, R. Andritschke, H. Böhringer et al., eROSITA on SRG, in Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, ed. by M. Arnaud, S.S Murray, T. Takahashi. Proceedings of the SPIE, vol. 7732 (2010), 10pp. article id. 77320UGoogle Scholar
  29. S. Rabien, N. Ageorges, L. Barl et al., ARGOS: the laser guide star system for the LBT. SPIE 7736, id. 77360E-77360E-12 (2010)Google Scholar
  30. B. Rudek, S.-K. Son, L. Foucar et al., Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses. Nat. Photon. 6(12), 858–865 (2012)CrossRefADSGoogle Scholar
  31. D. Rupp, M. Adolph, T. Gorkover et al., Identification of twinned gas phase clusters by single-shot scattering with intense soft x-ray pulses. New J. Phys. 14(5), 055016 (2012)Google Scholar
  32. O. Scharf, S. Ihle, I. Ordavo et al., Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera. Anal. Chem. 83, 2532–2538 (2011)CrossRefGoogle Scholar
  33. D. Schlosser, M. Huth, R. Hartmann et al., Expanding the energy range of pnCCD detectors by coupling to CsI(Tl) scintillators – experimental results. NIMA (2015, submitted)Google Scholar
  34. J. Schmidt, R. Hartmann, P. Holl et al., Extending the dynamic range of fully depleted pnCCDs. JINST 9(12), article id. P10008 (2014)Google Scholar
  35. M. Seibert, T. Ekeberg, F. Maia et al., Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470(7332), 78–81 (2011)CrossRefADSGoogle Scholar
  36. S. Send, A. Abboud, R. Hartmann et al., Characterization of a pnCCD for applications with synchrotron radiation. NIMA 711 132–142 (2013)CrossRefADSGoogle Scholar
  37. T. Stadlbauer, B. Aschenbach (2001) X-ray Spectroscopy of Tycho’s Supernova Remnant 2001AGM....18S0103S, in Meeting JENAM 2001 of the European Astronomical Society and the Astronomische Gesellschaft, Munich, 10–15 Sept 2001, abstract #MS 01 03. Bibliographic Code: 2001AGM....18S0103SGoogle Scholar
  38. R. Stover, M. Wei, Y. Lee et al., High-performance CCD on high-resistivity silicon. Proc. SPIE 3505, 13, 1 (1998)Google Scholar
  39. L. Strüder, High resolution imaging X-ray spectrometers – a review. NIMA 454, 73–113 (2000)CrossRefADSGoogle Scholar
  40. L. Strüder, H. Bräuninger, M. Maier et al., The MPI/AIT X-ray imager (MAXI) – high speed pn-CCDs for X-ray detection. NIMA 288, 227–235 (1990)CrossRefADSGoogle Scholar
  41. L. Strüder, H. Bräuninger, U. Briel et al., A 36 cm2 large monolythic pn-charge coupled device x-ray detector for the European XMM satellite mission. Rev. Sci. Instrum. 68, 4271 (1997)CrossRefADSGoogle Scholar
  42. L. Strüder, U. Briel, K. Dennerl et al., The European photon imaging camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365(1), 18–26 (2001)CrossRefADSGoogle Scholar
  43. L. Strüder, J. Englhauser, R. Hartmann et al., pn-CCDs on XMM-Newton – 42 months in orbit. NIMA 512, 386–400 (2003)Google Scholar
  44. L. Strüder, S. Epp, D. Rolles et al., Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. NIMA 614, 483–496 (2010)CrossRefADSGoogle Scholar
  45. T. Takahashi, K. Mitsuda, R. Kelly et al., The ASTRO-H X-ray observatory. SPIE 8443, article id. 84431Z, 22pp. (2012)Google Scholar
  46. Y. Tanaka, H. Innoue, S. Holt et al., The X-ray astronomy satellite ASCA. PASJ 46(3), L37–L41 (1994)ADSGoogle Scholar
  47. J.P. Walder, G. Chao, J.F. Genat et al., A low power, wide dynamic range multigain signal processor for the SNAP CCD. IEEE Trans. Nucl. Sci. 51, 1936 (2004)CrossRefADSGoogle Scholar
  48. M. Weisskopf, H. Tananbaum, L. Van Speybroeck et al., Chandra X-Ray Observatory (CXO): overview. SPIE 4012, 2–16 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.PNSensorMunichGermany

Personalised recommendations