Advertisement

Brilliant Light Sources driven by Laser-Plasma Accelerators

  • Andreas R. Maier
  • Manuel Kirchen
  • Florian Grüner
Living reference work entry

Latest version View entry history

Abstract

Brilliant light sources, such as free-electron lasers, are an essential tool for a multidisciplinary research community, ranging from medicine and life sciences to fundamental physics, as they enable new insights into processes on atomic length and time scales. Laser-plasma accelerators bear the promise to drive future compact free-electron lasers. A high-energy laser pulse excites a density perturbation in a plasma, generating large electric fields, which can accelerate electron beams to GeV scale energies over only a few centimeters acceleration length. Synchronized to an optical laser and with intrinsic pulse lengths on a few-femtosecond scale, an X-ray beam derived from such a bunch promises highest temporal resolution. Here, an introduction to the basic physics of laser-plasma acceleration and its recent development will be given, followed by a brief discourse on the theory of free-electron lasers. Based on this, we discuss the challenges arising when designing a laser-plasma-based free-electron laser.

Keywords

Laser-plasma acceleration Free-electron laser Compact light source Laser-based X-rays Undulator radiation 

Notes

Acknowledgements

We would like to thank I. Dornmair, S. Reiche, C. B. Schroeder and R. Lehe for fruitful discussions.

References

  1. K.L.F. Bane, G. Stupakov, Resistive wall wakefield in the LCLS undulator beam pipe, 2004.CrossRefGoogle Scholar
  2. R. Bonifacio, C. Pellegrini, L.M. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984). doi:10.1016/0030-4018(84) 90105-6CrossRefADSGoogle Scholar
  3. R. Bonifacio, L.D.S. Souza, B. McNeil, Emittance limitations in the free electron laser. Opt. Commun. 93, 179 (1992). http://dx.doi.org/10.1016/0030-4018(92)90525-V CrossRefADSGoogle Scholar
  4. A. Buck, M. Nicolai, K. Schmid, C.M.S. Sears, A. Savert, J.M. Mikhailova, F. Krausz, M.C. Kaluza, L. Veisz, Real-time observation of laser-driven electron acceleration. Nat. Phys. 7(7), 543–548, 07 2011. http://dx.doi.org/10.1038/nphys1942
  5. S. Bulanov, N. Naumova, F. Pegoraro, J. Sakai, Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58(5), R5257–R5260 (1998). doi:10.1103/PhysRevE.58.R5257CrossRefADSGoogle Scholar
  6. L. Campbell, B. McNeil, Puffin: a three dimensional, unaveraged free electron laser simulation code. Phys. Plasmas 19, 093119 (2012). http://dx.doi.org/10.1063/1. 4752743
  7. M. Chen, E. Esarey, C. Geddes, E. Cormier-Michel, C. Schroeder, S. Bulanov, C. Benedetti, L. Yu, S. Rykovanov, D. Bruhwiler, W. Leemans, Electron injection and emittance control by transverse colliding pulses in a laser-plasma accelerator. Phys. Rev. Spec. Top. Accel. Beams 17(5), 051303 (2014). doi:10.1103/PhysRevSTAB.17.051303Google Scholar
  8. J.A. Clarke, The Science and Technology of Undulators and Wigglers (Oxford University Press, Oxford, 2006)Google Scholar
  9. J.M. Dawson, Nonlinear Electron oscillations in a cold plasma. Phys. Rev. 113(2), 383–387 (1959). doi:10.1103/PhysRev.113.383CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. I. Dornmair, K. Floettmann, A.R. Maier, Emittance conservation by tailored focusing profiles in a plasma accelerator. Phys. Rev. ST Accel. Beams 18, 041302 (2015). doi:10.1103/PhysRevSTAB.18.041302CrossRefADSGoogle Scholar
  11. E. Esarey, M. Pilloff, Trapping and acceleration in nonlinear plasma waves. Phys. Plasmas (1994-present) 2(5), 1432–1436 (1995). doi:10.1063/1.871358Google Scholar
  12. E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting, P. Sprangle, Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79(14), 2682–2685 (1997). doi:10.1103/PhysRevLett.79.2682CrossRefADSGoogle Scholar
  13. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1285 (2009). doi:10.1103/RevModPhys.81. 1229CrossRefADSGoogle Scholar
  14. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka, A laser–plasma accelerator producing monoenergetic electron beams. Nature 431(7008), 541–544 (2004). doi:10.1038/nature02963CrossRefADSGoogle Scholar
  15. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444(7120), 737–739 (2006). doi:10.1038/nature05393CrossRefADSGoogle Scholar
  16. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, V. Malka, Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel. Phys. Plasmas (1994-present) 17(8), 083107 (2010). doi:10.1063/1. 3469581Google Scholar
  17. K. Floettmann, Some basic features of the beam emittance. Phys. Rev. ST Accel. Beams 6, 034202 (2003a). http://link.aps.org/doi/10.1103/PhysRevSTAB.6.034202 CrossRefADSGoogle Scholar
  18. K. Floettmann, Some basic features of the beam emittance. Phys. Rev. ST Accel. Beams 6, 034202 (2003b). doi:10.1103/PhysRevSTAB.6.034202CrossRefADSGoogle Scholar
  19. C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431(7008), 538–541 (2004). doi:10. 1038/nature02900Google Scholar
  20. C.G.R. Geddes, K. Nakamura, G.R. Plateau, C. Toth, E. Cormier-Michel, E. Esarey, C.B. Schroeder, J.R. Cary, W.P. Leemans, Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100(21), 215004 (2008). doi:10.1103/PhysRevLett.100.215004Google Scholar
  21. P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction (Imperial College Press, London, 2005). ISBN 9781860941351CrossRefGoogle Scholar
  22. A.J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C.B. Schroeder, C.G.R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth, W.P. Leemans, Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 7(11), 862–866 (2011). doi:10.1038/nphys2071CrossRefGoogle Scholar
  23. S.M. Hooker, Developments in laser-driven plasma accelerators. Nat. Photonics 7(10), 775–782 (2013). doi:10.1038/nphoton.2013.234CrossRefADSGoogle Scholar
  24. Z. Huang, K.-J. Kim, A review of x-ray free-electron laser theory. Phys. Rev. ST Accel. Beams 10, 034801 (2007). http://link.aps.org/doi/10.1103/PhysRevSTAB.10.034801 CrossRefADSGoogle Scholar
  25. Z. Huang, Y. Ding, C.B. Schroeder, Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 109(20), 204801 (2012). doi:10.1103/PhysRevLett.109.204801Google Scholar
  26. C. Joshi, T. Tajima, J.M. Dawson, H.A. Baldis, N.A. Ebrahim, Forward Raman instability and electron acceleration. Phys. Rev. Lett. 47(18), 1285–1288 (1981). doi:10.1103/ PhysRevLett.47.1285CrossRefADSGoogle Scholar
  27. H.T. Kim, K.H. Pae, H.J. Cha, I.J. Kim, T.J. Yu, J.H. Sung, S.K. Lee, T.M. Jeong, J. Lee, Enhancement of electron energy to the multi-Gev regime by a dual-stage laser-wakefield accelerator pumped by Petawatt laser pulses. Phys. Rev. Lett. 111(16), 165002 (2013). doi:10.1103/PhysRevLett.111.165002Google Scholar
  28. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Tóth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2(10), 696–699 (2006). doi:10.1038/nphys418CrossRefGoogle Scholar
  29. W. Leemans, A. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. Schroeder, C. Tóth, J. Daniels, D. Mittelberger, S. Bulanov, J.-L. Vay, C. Geddes, E. Esarey, Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113(24), 245002 (2014). doi:10.1103/ PhysRevLett.113.245002Google Scholar
  30. R. Lehe, C. Thaury, E. Guillaume, A. Lifschitz, V. Malka, Laser-plasma lens for laser-wakefield accelerators. Phys. Rev. ST Accel. Beams 17, 121301 (2014). doi:10. 1103/PhysRevSTAB.17.121301Google Scholar
  31. L. Lilje, E. Kako, D. Kostin, A. Matheisen, W.D. Möller, D. Proch, D. Reschke, K. Saito, P. Schmüser, S. Simrock, T. Suzuki, K. Twarowski, Achievement of 35 MV/m in the superconducting nine-cell cavities for TESLA. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detectors Assoc. Equip. 524(1–3), 1–12 (2004). doi:10.1016/j.nima.2004.01.045CrossRefADSGoogle Scholar
  32. A. Loulergue, M. Labat, C. Evain, C. Benabderrahmane, V. Malka, M.E., Couprie, Beam manipulation for compact laser wakefield accelerator based free-electron lasers. New J. Phys. 17, 023028 (2015). doi:10.1088/1367-2630/17/2/023028Google Scholar
  33. O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismaïl, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V. Malka, J. Faure, Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nat. Phys. 7(3), 219–222 (2011). doi:10.1038/nphys1872CrossRefGoogle Scholar
  34. A.R. Maier, A. Meseck, S. Reiche, C.B. Schroeder, T. Seggebrock, F. Grüner, Demonstration scheme for a laser-plasma-driven free-electron laser. Phys. Rev. X 2(3), 031019 (2012). doi:10.1103/PhysRevX.2.031019Google Scholar
  35. V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S.P.D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, A.E. Dangor, Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002). doi:10.1126/science.1076782CrossRefADSGoogle Scholar
  36. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431(7008), 535–538 (2004). doi:10.1038/nature02939CrossRefADSGoogle Scholar
  37. B.W.J. McNeil, N.R. Thompson, X-ray free-electron lasers. Nat. Photon. 4, 814 (2010). http://dx.doi.org/10.1038/nphoton.2010.239 CrossRefADSGoogle Scholar
  38. M. Migliorati, A. Bacci, C. Benedetti, E. Chiadroni, M. Ferrario, A. Mostacci, L. Palumbo, A.R. Rossi, L. Serafini, P. Antici, Intrinsic normalized emittance growth in laser-driven electron accelerators. Phys. Rev. ST. Accel. Beams 16, 011302 (2013). doi:10.1103/PhysRevSTAB.16.011302CrossRefADSGoogle Scholar
  39. A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, F.N. Walsh, Electron acceleration from the breaking of relativistic plasma waves. Nature 377(6550), 606–608 (1995). doi:10.1038/377606a0CrossRefADSGoogle Scholar
  40. S. Reiche, Genesis 1.3: a fully 3D time-dependent fel simulation code. Nucl. Instrum. Methods A 429, 243–248 (1999). http://dx.doi.org/10.1016/S0168-9002(99)00114-X
  41. C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, V. Malka, Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett. 102(16), 164801 (2009). doi:10.1103/ PhysRevLett.102.164801Google Scholar
  42. E. Saldin, E. Schneidmiller, M. Yurkov, The Physics of Free Electron Lasers (Springer, Berlin/New York, 2000)CrossRefGoogle Scholar
  43. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Self-amplified spontaneous emission fel with energy-chirped electron beam and its application for generation of attosecond x-ray pulses. Phys. Rev. ST Accel. Beams 9, 050702 (2006). doi:10.1103/PhysRevSTAB.9. 050702CrossRefADSGoogle Scholar
  44. P. Schmüser, M. Dohlus, J. Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers (Springer, Berlin, Heidelberg, 2009)CrossRefGoogle Scholar
  45. K. Schmid, A. Buck, C.M.S. Sears, J.M. Mikhailova, R. Tautz, D. Herrmann, M. Geissler, F. Krausz, L. Veisz, Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. Spec. Top. Accel. Beams 13(9), 091301 (2010). doi:10.1103/PhysRevSTAB.13.091301Google Scholar
  46. C.B. Schroeder, E. Esarey, W.M. Fawley, W. Leemans, A design for an XUV FEL driven by the laser-plasma accelerator at the LBNL LOASIS facility, 2006, https: //publications.lbl.gov/islandora/object/ir%3A126995/
  47. C.B. Schroeder, E. Esarey, W.P. Leemans, J. van Tilborg, F.J. Grüner, A.R. Maier, Free-Electron Lasers driven by laser-plasma accelerators using decompression or dispersion, in 35th International Free-Electron Laser Conference, New York, 25–30 Aug 2013. ISBN:978-3-95450-126-7Google Scholar
  48. P. Sprangle, E. Esarey, A. Ting, Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41(8), 4463–4469 (1990). doi:10.1103/PhysRevA.41.4463CrossRefADSGoogle Scholar
  49. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43(4), 267–270 (1979). doi:10.1103/PhysRevLett.43.267CrossRefADSGoogle Scholar
  50. C. Thaury, E. Guillaume, A. Dopp, R. Lehe, A. Lifschitz, K. Ta Phuoc, J. Gautier, J.-P. Goddet, A. Tafzi, A. Flacco, F. Tissandier, S. Sebban, A. Rousse, V. Malka, Demonstration of relativistic electron beam focusing by a laser-plasma lens. Nat. Commun. 6, 6860 (2015). http://dx.doi.org/10.1038/ncomms7860 CrossRefADSGoogle Scholar
  51. D. Umstadter, J.K. Kim, E. Dodd, Laser Injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76(12), 2073–2076 (1996). doi:10.1103/ PhysRevLett.76.2073CrossRefADSGoogle Scholar
  52. X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S.A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A.C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, M.C. Downer, Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. (2013). doi:10.1038/ncomms2988Google Scholar
  53. R. Weingartner, S. Raith, A. Popp, S. Chou, J. Wenz, K. Khrennikov, M. Heigoldt, A.R. Maier, N. Kajumba, M. Fuchs, B. Zeitler, F. Krausz, S. Karsch, and F. Grüner. Ultralow emittance electron beams from a laser-wakefield accelerator. Phys. Rev. ST Accel. Beams 15, 111302 (2012). doi:10.1103/PhysRevSTAB.15.111302CrossRefADSGoogle Scholar
  54. K. Wille, The Physics of Particle Accelerators (Oxford University Press, Oxford, 2001)Google Scholar
  55. M. Xie, Design optimization for an x-ray free electron laser driven by SLAC linac. in Proceedings of the 1995 Particle Accelerator Conference, 1995. http://dx.doi.org/10.1109/PAC.1995.504603
  56. M. Xie, Exact and variational solutions of 3D eigenmodes in high gain FELs. Nucl. Instrum. Methods A 445, 59–66 (2000). http://dx.doi.org/10.1016/S0168-9002(00) 00114-5

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andreas R. Maier
    • 1
  • Manuel Kirchen
    • 1
  • Florian Grüner
    • 1
  1. 1.Center for Free-Electron Laser Science & Department of PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations