Dietary Fiber and Prebiotics

  • Werner Praznik
  • Renate Loeppert
  • Helmut Viernstein
  • Alexander G. Haslberger
  • Frank M. Unger
Living reference work entry


Dietary fiber and prebiotics exert a great impact on health-promoting food for mankind. Under this aspect a general overview is given about the bioavailability of carbohydrates and their influence on dietary fiber intake and about the developing of the prebiotic concept and specific functional foods. Moreover, the occurrence and chemical composition of native dietary fiber such as resistant starch, pectin, hemicelluloses, ß-glucan, and fructan in context to their properties – in particular the prebiotic potential for human health – will be discussed. Important industrially produced bioactive carbohydrates from plant and seaweed sources with high prebiotic efficacy and increasing economic interest such as fructan – particularly inulin and fructooligosaccharides (FOS), heteropolysaccharides, xylooligosaccharides (XOS), and isomaltooligosaccharides (IMO) – will be presented. Additionally enzymatic processing of prebiotic-active oligosaccharides such as FOS, galactooligosaccharides (GOS), or nondigestible disaccharides such as isomaltulose and trehalulose derived from sucrose and lactose will be demonstrated and discussed.


Nutrition values Glycemic index Functional food Dietary fiber Insoluble fiber Soluble fiber Prebiotics Non-starch polysaccharides Undigestible oligosaccharides Fructan Inulin Resistant starch β-Glucan Heteropolysaccharides 



American Association of Cereal Chemists




Association of Official Analytical Chemists


Degree of polymerization


Functional food


Food and Nutrition Board of the Institute of Medicine of the National Academy of Sciences




Functional Food Science in Europe








c-Jun NH2-terminal kinase


Nondigestible oligosaccharides


Nonsteroidal anti-inflammatory drugs


Non-starch oligosaccharides


Non-starch polysaccharides




Resistant starch


Short-chain fatty acids


Traditional Chinese medicine


Unavailable complex carbohydrates


World Health Organization




  1. Allsopp P, Possemirs S, Campell D, Ovarzabal IS, Gill C, Rowland I (2013) An exploratory study into thr putative prebiotic activity of fructans isolated from Agave angustifolia and associated anticancer activity. Anaerob 22:38–44Google Scholar
  2. Åman P, Graham H (1987) Analysis of total and insoluble mixed-linked (1→3), (1→4)-β-d-glucans in barley and oats. J Agric Food Chem 35:704–709CrossRefGoogle Scholar
  3. Anderson JW, Zettwoch N, Feldman T, Tietyen-Clark J, Oeltgen P, Bishop CW (1988) Cholesterol-lowering effects of psyllium hydrophilic mucilloid for hypercholesteremic men. Arch Intern Med 148:292–296CrossRefGoogle Scholar
  4. Andersson HB, Ellegard LH, Bosaeus LG (1999) Nondigestibility characteristics of inulin and oligofructose in humans. J Nutr 129:1428S–1430SGoogle Scholar
  5. Araki C, Arai K (1967) Studies on the chemical constitution of agar-agar. XXIV. Isolation of a new disaccharide as a reversion product from acidic hydrolysate. Bull Chem Soc Jpn 40:1452–1456CrossRefGoogle Scholar
  6. Asp NG (1992) Resistant starch-proceedings from second plenary meeting of EURESTA: Eu FLAIR conc action, 11 on physiol. Implications of the consumption of resistant starch in man. Eur J Clin Nutr 46:S1Google Scholar
  7. Aune D, Ursin G, Veierød MB (2009) Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia 52(11):2277–2287CrossRefGoogle Scholar
  8. Beylot M (2005) Effects of inulin-type fructans on lipid metabolism in man and in animal models. Br J Nutr 93(Suppl 1):S163–S168CrossRefGoogle Scholar
  9. Boehm G, Lidestri M, Casetta P, Jelinek J, Negretti F, Stahl B, Marini A (2002) Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of fecal bifidobacteria in preterm infants. Arch Dis Child Fetal Neonatal Ed 86:F178–F181CrossRefGoogle Scholar
  10. Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourie B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80:1658–1664Google Scholar
  11. Brouns F, Theuwissen E, Adam A, Bell M, Berger A, Mensink RP (2012) Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur J Clin Nutr 66:591–599CrossRefGoogle Scholar
  12. Chadwick R, Henson S, Moseley B, Koenen G, Liakopoulus M, Midden C, Palou A, Rechkemmer G, Schröder D, Von Wright A (2003) Functional foods. Springer, BerlinCrossRefGoogle Scholar
  13. Cheetham PSJ, Imber CE, Isherwood J (1982) The formation of isomaltulose by immobilized Erwinia rhapontici. Nature (Lond) 299:628–631CrossRefGoogle Scholar
  14. Chen H, Yan XJ (2005) Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system. Biochim Biophys Acta 1722:103–111CrossRefGoogle Scholar
  15. Chen H, Yan X, Zhu P, Lin J (2006) Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutr J 5:31–42CrossRefGoogle Scholar
  16. Cieślik E, Topolska K, Pisulewski PM (2009) Effect of inulin-type fructans on body weight gain and selected biochemical parameters at calcium hypoalimentation in rats. Pol J Food Nutr Sci 59(2):163–168Google Scholar
  17. Cleave TL (1974) The Saccharine disease. John Wright & sons Ltd., BristolGoogle Scholar
  18. Cordain L, Miller JB, Eaten SB, Mann N, Holth SH, Speth JD (2000) Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter- gatherer diets. Am J Clin Nutr 71(3):682–692Google Scholar
  19. Coudray C, Bellanger J, Castiglia-Delavaud C, Vermorel V, Raissiguier Y (1997) Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur J Clin Nutr 51:375–380CrossRefGoogle Scholar
  20. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474CrossRefGoogle Scholar
  21. Drzikova B, Dongowski G, Gebhardt E, Habel A (2005) The composition of dietary fibre-rich extrudates from oat affects bile acid binding and fermentation in vitro. Food Chem 90:181–192CrossRefGoogle Scholar
  22. Eaton SB, Cordain L (2002) Evolution, diet and health. In: Ungar PS, Teaford MF (eds) Human diet: origin and evolution. Bergin and Garvey, Atlanta, pp 7–17Google Scholar
  23. Eaton SB, Konner M (1985) Paleolithic nutrition: a consideration of its nature and current implications. N Engl J Med 312(5):283–289CrossRefGoogle Scholar
  24. The EFSA Journal (2005) Cassia gum as a food additive. 389:1–16
  25. Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem 124:411–421CrossRefGoogle Scholar
  26. Elmadfa I, Leitzmann C (2004) Ernährung des Menschen, 4th edn. Ulmer, StuttgartGoogle Scholar
  27. Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46(2):S33–S50Google Scholar
  28. Enoki T, Okuda S, Kudo Y, Takashima F, Sagawa H, Kato I (2010) Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1. Biosci Biotechnol Biochem 74:766–770CrossRefGoogle Scholar
  29. Enoki T, Tominaga T, Takashima F, Ohnogi H, Sagawa H, Kato I (2012) Anti-tumor-promoting activities of agaro-oligosaccharides on two-stage mouse-skin carcinogenesis. Biol Pharm Bull 35:1145–1149CrossRefGoogle Scholar
  30. EURESTA (1994) European FLAIR-Concerted Action No 11 (COST 911)Google Scholar
  31. FAO/WHO (2003) Food energy – methods of analysis and conversion factors. Report of a technical workshop, FAO Food and Nutrition Paper – 77, RomeGoogle Scholar
  32. Foster-Powell K, Holt SH, Brand-Miller JC (2002) International table of glycemic index and glycemic load values. Am J Clin Nutr 76(1):5–56Google Scholar
  33. French AD, Waterhouse AL (1993) Chemical structure and characteristics. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 41–81Google Scholar
  34. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412Google Scholar
  35. Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982CrossRefGoogle Scholar
  36. Gordon KD (1987) Evolutionary perspectives on human diet. In: Johnson EF (ed) Nutritional anthropology. Alan R Liss, New York, pp 3–39Google Scholar
  37. Grupe G (1992) Zum Nahrungsverhalten prähistorischer Populationen. In: Brätter P, Gramm HJ (eds) Mineralstoffe und Spurenelemente in der Ernährung des Menschen. Blackwell Wiss, Berlin, pp 92–103Google Scholar
  38. Hayakawa K, Mizutani J, Wada K, Masai T, Yosihara I, Mitsuoka T (1990) Effects of Soyabean Oligosaccharides on Human Fecal Flora Microbial Ecology in Health and Deseases 3:293–303Google Scholar
  39. Higashimura Y, Naito Y, Takagi T, Tanimura Y, Mizushima K, Harusato A, Fukui A, Yoriki H, Handa O, Ohnogi H, Yoshikawa T (2014) Preventive effect of agaro-oligosaccharides on non-steroidal anti-inflammatory drug-induced small intestinal injury in mice. J Gastroenterol Hepatol 29:310–317CrossRefGoogle Scholar
  40. Hipsley EH (1953) Dietary fibre and pregnancy toxaemia. Br Med J 2:420–422CrossRefGoogle Scholar
  41. Hofmann AF (2011) Overview of bile secretion. In: Wiley Online Library, Comprehensive Physiology, pp 549–566Google Scholar
  42. Japanscan Food Industry Bulletin (1998) Functional food and drinks in Japan. Leatherhead, UK : Leatherhead Food RAGoogle Scholar
  43. Jenkins DJA, Jenkins AL (1987) The glycemic index, fibre and the dietary treatment of hypertriglyceridemia and diabetes. J Am Coll Nutr 6(1):11–17CrossRefGoogle Scholar
  44. Jones (2000) Update on defining dietary fibre. Cereal Foods World 45:219–220Google Scholar
  45. Kasper H (2000) Ernährungsmedizin und Diätetik, 9th edn. Elsevier, Urban & Fischer, MünchenGoogle Scholar
  46. Kiefer I, Burger P, Blass M, Berghofer E, Hoppichler F (2002) Functional food – Lebensmittel mit Zusatznutzen? J Ernährungsmed 2:10–15Google Scholar
  47. Kim TH, Lee YY (2007) Pretreatment of corn Stover by soaking in aqueous ammonia at moderate temperatures. Appl Biochem Biotechnol 136–140:81–92Google Scholar
  48. Lau JM, McNeil M, Darvill AG, Albersheim P (1985) Structure of the backbone of rhamnogalacturonan I, a pectic polysaccharide in the primary cell walls of plants. Carbohydr Res 137:111–125CrossRefGoogle Scholar
  49. Lemnitzer KH (1977) Ernährungssituation und wirtschaftliche Entwicklung, ssip-Schriften, SaarbrückenGoogle Scholar
  50. Lin K-Y, Daniel JR, Whistler RL (1994) Structure of chia seed polysaccharide exudates. Carbohydr Polym 23:13–18CrossRefGoogle Scholar
  51. Livesey G (1992) The energy values of dietary fibre and sugar alcohols for man. Nutr Res Rev 5:61–84CrossRefGoogle Scholar
  52. Loeppert R, Huber A, Villalvazo Naranjo J, Praznik W (2009) Molecular and physiochemical characteristics of fructan during technological processing of Agave tequilana Weber var. azul. Dyn Biochem Process Biotechnol Mol Biol 3(Special Issue 1):29–33Google Scholar
  53. Ludwig DS, Eckel RH (2002) The glycemic index at 20y. Am J Clin Nutr 76:264S–265SGoogle Scholar
  54. MacDougall AJ, Ring SG (2004) Pectic polysaccharides. In: Tomasik P (ed) Chemical and functional properties of food saccharides. CRC press, Boca Raton, pp 181–195Google Scholar
  55. Mäkeläinen H, Forssten S, Saarinen M, Stowell J, Rautonen N, Ouwehand AC (2010) Xylooligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model. Benefic Microbes:81–91Google Scholar
  56. Meyer KA, Kushi LH, Jacobs DR, Slavin J, Sellers TA, Folsom AR (2002) Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 71(4):921–931Google Scholar
  57. Naran R, Chen G, Carpita NC (2008) Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage. Plant Physiol 148:132–141CrossRefGoogle Scholar
  58. Nugent AP (2005) Health properties of resistant starch, review. Nutr Bull 30:27–54CrossRefGoogle Scholar
  59. Ooshima T, Izumitani A, Minami T, Fujiwara T, Nakajima Y, Hamada S (1991) Trehalulose does not induce dental caries in rats infected with mutants streptococci. Caries Res 25:277–282CrossRefGoogle Scholar
  60. Orafti (1999) Description, production, natural occurrence and history of inulin and oligofructose. In: Orafti product book 08/99, p 11Google Scholar
  61. Park A-R, Oh D-K (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85:1279–1286CrossRefGoogle Scholar
  62. Popa VI, Spiridon J (1998) Hemicelluloses: structure and properties. In: Dumitrio S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 297–311Google Scholar
  63. Praznik W, Cieślik E, Florkiewicz AF (2002) Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Nahrung/Food 46:151–157CrossRefGoogle Scholar
  64. Praznik W, Cieślik E, Huber A (2004) Fructans: occurrence and application in food. In: Tomasik P (ed) Chemical and functional properties of food saccharides. CRC press, Boca Raton, pp 197–215Google Scholar
  65. Praznik W, Löppert R, Huber A (2007) Analysis and molecular composition of fructans from different plant sources. In: Shiomi N, Benkeblia N, Onodera S (eds) Recent advances in fructooligosaccharides research. Research Signpost, Kerala, pp 93–117Google Scholar
  66. Praznik W, Löppert R, Cruz Rubio JM, Zangger K, Huber A (2013) Structure of fructo-oligosaccharides from leaf and stem of Agave tequilana Weber, var. azul. Carbohydr Res 381:64–73CrossRefGoogle Scholar
  67. Prosky L (1999) Inulin and oligofructose are part of the dietary fiber complex. J AOAC Int 82(2):223–226Google Scholar
  68. Prosky L, Asp NG, Furada I et al (1985) Determination of total dietary fiber in foods and food products: collaborative study. J AOAC Int 68:677–679Google Scholar
  69. Rabiu BA, Jay AJ, Gibson GR, Rastall RA (2001) Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidases from Bifidobacterium species. Appl Environ Microbiol 67:2526–2530CrossRefGoogle Scholar
  70. Ramsden L (2004) Plant and algal gums and mucilages. In: Tomasik P (ed) Chemical and functional properties of food saccharides. CRC press, Boca Raton, pp 231–254Google Scholar
  71. Roberfroid MB (1993) Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr 33:103–148CrossRefGoogle Scholar
  72. Roberfroid MB (1998) Prebiotics and synbiotics: concepts and nutritional properties. Br J Nutr 80(Suppl 2):197–202Google Scholar
  73. Roberfroid M (2003) Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr 33:103–148CrossRefGoogle Scholar
  74. Roberfroid MB (2005) Introducing inulin-type fructans. Brit J Nutr 93(Suppl 1):S13–S25Google Scholar
  75. Roberfroid MB, Slavin J (2000) Non-digestible oligosaccharides. Crit Rev Food Sci Nutr 40:461–480CrossRefGoogle Scholar
  76. Roberfroid MB, Gibson GR, Delzenne N (1993) The biochemistry of oligofructose, a non-digestible fiber: an approach to calculate its caloric value. Nutr Rev 51:137–146CrossRefGoogle Scholar
  77. Rycroft CE, Jones MR, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887CrossRefGoogle Scholar
  78. Saito Y, Takano T, Rowland I (1992) Effects of soybean oligosaccharides on the human gut microflora in in vitro culture. Microb Ecol Health Dis 5:105–110CrossRefGoogle Scholar
  79. Santander SP, Aoki M, Hernandez JF, Pombo M, Moins-Teisserenc H, Mooney N, Fiorentino S (2011) Galactomannan from Caesalpinia spinosa induces phenotypic and functional maturation of human dendritic cells. Int Immunopharmacol 11:652–660CrossRefGoogle Scholar
  80. Sasaki M, Ogasawara N, Funaki Y, Mizuno M, Iida A, Goto C, Koikeda S, Kasugai K, Joh T (2013) Transglucosidase improves the gut microbiota profile of type 2 diabetes mellitus patients; a randomized double-blind, placebo-controlled study. BMC Gastroenterol 13:81CrossRefGoogle Scholar
  81. Sayar S, Jannink JL, White PJ (2005) In vitro binding of flours from oat lines varying in percentage and molecular weight distribution of β-glucan. J Agric Food Chem 53:8798–8803CrossRefGoogle Scholar
  82. Schaafsma G (2004) Health claims, options for dietary fibre. In: Van der Kamp JW, Asp N-G, Miller Jones J, Schaafsma G (eds) Dietary fibre bio-active carbohydrates for food and feed. Academic, Wageningen, pp 27–37Google Scholar
  83. Schrezenmeir J, De Vrese M (2001) Probiotics, prebiotics, and synbiotics – approaching a definition. Am J Clin Nutr 73:361S–364SGoogle Scholar
  84. Sotnikova N, Antsiferova I, Malyshkina A (2002) Cytokine network of eutopic and ectopic endometrium in women with adenomyosis. Am J Reprod Immunol 47(4):251–255CrossRefGoogle Scholar
  85. Srivastava M, Kapoor VP (2005) Seed galactomannans: an overview. Chem Biodivers 2(3): 295–317Google Scholar
  86. Stehle H (2000) Functional food –definition und Einordnung. In: Kluthe R (ed) Ernährungsmedizin in der Praxis. Spitta Verlag, Balingen, pp 1–7Google Scholar
  87. Takayama T, Miyanishi K, Hayashi T, Kukitsu T, Takanishi K, Ishiwatari H, Kogawa T, Abe T, Niitsu Y (2005) Aberrant crypt foci: detection, gene abnormalities, and clinical usefulness. Clin Gastroenterol Hepatol 3(Suppl 1):42–45CrossRefGoogle Scholar
  88. Tomoda M, Shimizu N, Shimada K, Gonda R, Sakabe H (1984) Plant mucilages XXXIV. The location of O-acetyl groups and the structural features of Plantago-mucilage A, the mucous polysaccharide from the seeds of Plantago major var. asiatica. Chem Pharm Bull 32:2182–2186CrossRefGoogle Scholar
  89. Topping DL, Fukushima M, Bird AR (2003) Resistant starch as a prebiotic and symbiotic: state of the art. Proc Nutr Soc 62:171–176CrossRefGoogle Scholar
  90. Trowell H (1972) Ischemic heart disease and dietary fibre. Am J Clin Nutr 25:926–932Google Scholar
  91. Trowell H, Burkitt D (1986) Physiological role of dietary fibre: a ten year-review. J Dent Child 53(6):444–447Google Scholar
  92. Tzortzis G, Goulas AK, Gibson GR (2005) Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl Microbiol Biotechnol 68:412–416CrossRefGoogle Scholar
  93. Van Dam RM, Willet WC, Rimm EB, Stampfer MJ, Hu FB (2002) Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care 25:417–424CrossRefGoogle Scholar
  94. Van den Heuvel EG, Schoterman MH, Muijs T (2000) Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr 130(12):2938–2942Google Scholar
  95. Vazquez MJ, Alonso JL, Dominquez H, Parajo JC (2000) Xylooligosaccharides: manufacture and applications. Trends Food Sci Technol 11:387–393CrossRefGoogle Scholar
  96. Vazquez MJ, Garrote G, Alonso JL, Dominguez H, Parajo JC (2005) Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies. Bioresour Technol 96:889–896CrossRefGoogle Scholar
  97. Vera C, Guerrero C, Conejeros R, Illanes R (2012) Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb Technol 50:188–194CrossRefGoogle Scholar
  98. Whisner CM, Nakatsu CH, McCabe LD, McCabe GP, Wastney ME, van den Heuvel EG (2013) Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr 110(7):1292–1303CrossRefGoogle Scholar
  99. Wiebke F (2004) Getreide. In: Koerber K, Männle T, Leitzmann C (eds) Vollwert-Ernährung, 10th edn. Karl F Haug, Stuttgart, pp 239–260Google Scholar
  100. Wood PJ (2001) Cereal β-glucans: structure, properties and health claims. In: McCleary BV, Prosky L (eds) Advanced dietary fibre technology. Blackwell Science, Oxford, pp 315–327Google Scholar
  101. Yamada K, Shinhara H, Hosoyan N (1985) Hydrolysis ofα-1-O-α-d-glucopyranosyl-d-fructofuranose (trehalulose) by rat intestinal sucrase-isomaltase complex. Nutr Rep Int 32:1211–1222Google Scholar
  102. Yun JW, Jung KH, Jeon YJ, Lee JH (1992) Continuous production of fructo-oligosaccharides by immobilized cells of Aureobasidium pullulans. J Microbiol and Biotechn 2:98–101Google Scholar
  103. Yun JW, Song SK (1999) Enzymatic production of fructooligosaccharides from sucrose. In: Bucke C (ed) Methods in biotechnology, vol 10, Carbohydrate biotechnology protocols. Humana Press, Totowa, pp 141–151Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Life Sciences, Department of Pharmaceutical Technology and BiopharmaceuticsUniversity of ViennaViennaAustria
  2. 2.Department of Nutritional ResearchUniversity of ViennaViennaAustria

Personalised recommendations