Advertisement

Bioactivity and Applications of Polysaccharides from Marine Microalgae

  • Maria Filomena de Jesus Raposo
  • Alcina Maria Miranda Bernardo de Morais
  • Rui Manuel Santos Costa de Morais
Living reference work entry

Abstract

Marine microorganisms have been under research for the last decades, as sources of different biocompounds, each with various applications. Polysaccharides (PSs) are among these chemicals being produced and released by marine microalgae. These are very heterogeneous, including cyanobacteria and eukaryotic microalgae from several divisions/phyla, each of which with different characteristics. The PSs, sulfated or not, that they produce have already proved to be promising agents in various fields, such as food, feed, pharmaceutical, and biomedical. They can also be applied in wastewater and/or soil treatment and in some engineering areas, as naval engineering.

After a brief introduction on the general types of biopolymers produced by marine microalgae and cyanobacteria, this chapter starts by presenting the species of these microorganisms and the types of PSs they produce, as well as the respective chemical composition; goes into the production of PSs and the effect of specific compounds; and focuses on the physicochemical properties of these PSs and their composition and structure, approaching the rheological properties relevant for their functions and behavior. The bioactivity of PSs and their applications are, next, presented, including therapeutic applications based on their antiviral and antibacterial activities, antioxidant properties, anti-inflammatory and immunomodulatory characteristics, antitumoral activity, and antilipidemic and antiglycemic properties, among others. The potential use of PSs from marine microalgae as it is or incorporated in health foods is also considered. The mechanisms behind their antiviral and antibacterial activities are explained. Toxicological and safety issues are also disclosed, and there is a brief mention of the bioavailability of PSs from microalgae. The chapter ends by listing some preclinical studies with this type of polymers.

Keywords

Marine microalgae Polysaccharides Sulfate (exo)polysaccharides Health foods Bioactivity-Antioxidant Antiviral Antitumoral Immunomodulators Toxicity 

Abbreviations

arab

Arabinose

CaSp

Calcium spirulan

CB

Cyanobacterium(a)

EC50

The molar concentration of a drug that produces 50 % of the maximum possible response for that drug

ED50

In vitro or in vivo dose of drug that produces 50 % of its maximum response or effect

fru

Fructose

fuc

Fucose

GAG

Glycosaminoglycan

gal

Galactose

galAc

Galacturonic acid

glcAc

Glucuronic acid

glc

Glucose

IC50

The molar concentration of a drug which produces 50 % of its maximum possible inhibition

ID50

In vitro or in vivo dose of a drug that causes 50 % of the maximum possible inhibition for that drug

man

Mannose

MW

Molecular weight

NaSp

Sodium spirulan

NO

Nitric oxide

PS

Polysaccharide

rham

Rhamnose

sEPS

Sulfated exopolysaccharide

sPS

Sulfated polysaccharide

xyl

xylose

Notes

Acknowledgments

This work was supported by National Funds from FCT through project PEst-OE/EQB/LA0016/2013.

References

  1. Allard B, Casadeval E (1990) Carbohydrate composition and characterization of sugars from the green alga Botryococcus braunii. Phytochemistry 29(6):1875–1878Google Scholar
  2. Allard B, Guillot JP, Casadeval E (1987) The production of extracellular polysaccharides by fresh-water microalgae. Investigation of the polysaccharide components. In: Grassi G, Delmon B, Molle JF, Zibetta H (eds) Biomass for energy and industry. Elsevier Applied Science, London, pp 603–607Google Scholar
  3. Amara A, Steinbüchel A (2013) New medium for pharmaceutical grade Arthrospira. Int J Bacteriol 2013:9 p, Article ID 203432. doi:10.1155/2013/203432Google Scholar
  4. Arad S(M) (1988) Production of sulphated polysaccharides from red unicellular algae. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 65–87Google Scholar
  5. Arad S(M) (1999) Polysaccharides of red microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 282–291Google Scholar
  6. Arad S(M), Atar D (2007) Viscosupplementation with algal polysaccharides in the treatment of arthritis. Il. Patent WO/2007/066340Google Scholar
  7. Arad S(M), Weinstein J (2003) Novel lubricants from red microalgae: interplay between genes and products. J Biomed (Israel) 1:32–37Google Scholar
  8. Arad S(M), Adda M, Cohen E (1985) The potential of production of sulphated polysaccharides from Porphyridium. Plant Soil 89:117–127Google Scholar
  9. Arad S(M), Lerental YB, Dubinsky O (1992) Effect of nitrate and sulfate starvation on polysaccharide formation in Rhodella reticulata. Bioresour Technol 42:141–148Google Scholar
  10. Arad (M) S, Keristovsky G, Simon B, Barak Z, Geresh S (1993) Biodegradation of the sulphated polysaccharide of Porphyridium sp. by soil bacteria. Phytochemistry 32:287–290Google Scholar
  11. Arad S(M), Rapoport L, Moshkovich A, van Moppes D, Karpasan M, Golan R, Golan Y (2006) Superior biolubricant from a species of red microalga. Langmuir 2:7313–7317Google Scholar
  12. Archibald PJ, Fenn MD, Roy AB (1981) 13C NMR studies of d-glucose and d-galactose monosulphates. Carbohydr Res 93:177–190Google Scholar
  13. Ascencio F, Fransson LA, Wadström T (1993) Affinity of the gastric pathogen Helicobacter pylori for the N-sulphated glycosaminoglycan heparin sulphate. J Med Microbiol 38:240–244Google Scholar
  14. Badel S, Callet F, Laroche C, Gardarin C, Petit E, El Alaoui H, Bernardi T, Michaud P (2011a) A new tool to detect high viscous exopolymers from microalgae. J Ind Microbiol Biotechnol 38:319–326Google Scholar
  15. Badel S, Laroche C, Gardarin C, Petit E, Bernardi T, Michaud P (2011b) A new method to screen polysaccharide cleavage enzymes. Enzyme Microb Technol 48:248–252Google Scholar
  16. Bae SY, Yim JH, Lee HK, Pyo S (2006) Activation of murine peritoneal macrophages by sulphated exopolysaccharide from marine microalga Gyrodinium impudicum (strain KG03): involvement of the NF-kappa Β and JNK pathway. Int Immunopharmacol 6:473–484Google Scholar
  17. Baird IM, Waltersa RL, Daviesa PS, Hilla MJ, Drasara BS, Southgate DAT (1977) The effects of two dietary fiber supplements on gastrointestinal transit, stool weight and frequency, and bacterial flora, and fecal bile acids in normal subjects. Metabolism 26(2):117–128Google Scholar
  18. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279Google Scholar
  19. Barrow C, Shahidi F (2008) Marine nutraceuticals and functional foods. CRC Press/Taylor & Francis Group, Boca Raton, USAGoogle Scholar
  20. Basedow AM, Elber KH, Feigenbutz W (1980) Polymer-solvent interactions: dextrans in water and DMSO. Die Makromolekulare Chemie 181:1071–1080Google Scholar
  21. Bergman B (1986) Glyoxylate induced changes in the carbon and nitrogen metabolism of the cyanobacterium Anabaena cylindrica. Plant Physiol 80:698–701Google Scholar
  22. Bernal P, Llamas MA (2012) Promising biotechnological applications of antibiofilm exopolysaccharides. Microb Biotechnol 5(6):670–673Google Scholar
  23. Bleicher P, Mackin W (1995) Betafectin PGG-glucan: a novel carbohydrate immunomodulator with anti-infective properties. J Biotechnol Healthc 2:207–222Google Scholar
  24. Buck CB, Thompson CD, Roberts JN, Muller M, Lowy DR, Schiller JT (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2(7):671–680Google Scholar
  25. Burgaleta C, Territo MC, Quan SG, Golde DW (1978) Glucan-activated macrophages: functional characteristics and surface morphology. J Reticuloendothel Soc 23:195–204Google Scholar
  26. Challouf R, Trabelsi L, Dhieb RB, El Abed O, Yahia A, Ghozzi K, Ammar JB, Omran H, Ouada HB (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54(4):831–838Google Scholar
  27. Chen H, Zhang M, Qu Z, Xie B (2008) Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis). Food Chem 106:559–563Google Scholar
  28. Chen B, You B, Huang J, Yu Y, Chen W (2010) Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World J Microbiol Biotechnol 26:833–840Google Scholar
  29. Chen C-S, Anaya JM, Zhang S, Spurgin J, Chuang C-Y, Xu C, Miao A-J, Chen EY-T, Schwehr KA, Jiang Y, Quigg A, Santschi PH, Chin W-C (2011) Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton. PLoS ONE 6(7):1–7 (open access e21865)Google Scholar
  30. Ciferri O (1983) Spirulina, the edible microorganism (algae, single-cell protein). Microbiol Rev 47(4):551–578Google Scholar
  31. Clowes AW, Clowes MM (1987) Regulation of smooth muscle proliferation by heparin in vitro and in vivo. Int Angiol 6:45–51Google Scholar
  32. Cohen SM, Ito N (2002) A critical review of the toxicological effects of carrageenan and processed Eucheuma seaweed on the gastrointestinal tract. Crit Rev Toxicol 32(5):413–444Google Scholar
  33. Collins PM, Munasinghe VRN (1987) In: Collins PM (ed) Carbohydrates. Chapman and Hall, London, p 719Google Scholar
  34. Dade WB, Davis JD, Nichols PD, Nowell ARM, Thistle D, Trexler MB, White DC (1990) Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiol J 8(1):1–16Google Scholar
  35. Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulphated seaweed polysaccharides as antiviral agents. Curr Med Chem 11(18):2399–2419Google Scholar
  36. De Philippis R, Sili C, Tassinato G, Vincenzini M, Materassi R (1991) Effects of growth conditions on exopolysaccharide production by Cyanospira capsulata. Bioresour Technol 38:101–104Google Scholar
  37. De Philippis R, Margheri MC, Pelosi E, Ventura S (1993) Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J Appl Phycol 5:387–394Google Scholar
  38. De Philippis R, Sili C, Vincenzini M (1996) Response of an exopolysaccharide-producing heterocystous cyanobacterium to changes in metabolic carbon flux. J Appl Phycol 8:275–281Google Scholar
  39. Deng R, Chow T-J (2010) Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae spirulina. Cardiovasc Ther 28:e33–e45Google Scholar
  40. Dubinsky O, Barak Z, Geresh S, Arad S(M) (1990) Composition of the cell-wall polysaccharide of the unicellular red alga Rhodella reticulata at two phases of growth. In: Advances in algal biotechnology. Tiberias, p 17Google Scholar
  41. Dubinsky O, Simon B, Karamanos Y, Geresh S, Barak Z, Arad S(M) (1992) Composition of the cell wall polysaccharide produced by the unicellular red alga Rhodella reticulata. Plant Physiol and Biochem 30(4):409–414Google Scholar
  42. Dvir I, Maislos M, Arad S(M) (1995) Feeding rodents with red microalgae. In: Cherbut C, Barry JL, Lairon D, Durand M (eds) Dietary fiber, mechanisms of action in human physiology and metabolism. John Libbey Eurotext, Paris, pp 86–91Google Scholar
  43. Dvir I, Chayoth R, Sod-Moriah U, Shany S, Nyska A, Stark AH, Madar Z, Arad S(M) (2000) Soluble polysaccharide of red microalga Porphyridium sp. alters intestinal morphology and reduces serum cholesterol in rats. Br J Nutr 84:469–476Google Scholar
  44. Dvir I, Stark AH, Chayoth R, Madar Z, Arad S(M) (2009) Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1:156–167Google Scholar
  45. Enzing C, Ploeg M, Barbosa M, Sijtsma L (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. Mauro Vigani, Claudia Parisi, Emilio Rodríguez Cerezo (eds) Joint Research Centre Scientific and Policy Reports, European Commission Brighton, UKGoogle Scholar
  46. Esko J, Sharon N (2009) Microbial lectins: hemagglutinins, adhesins, and toxins. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Chapter 34Google Scholar
  47. Eteshola E, Karpasas M, Arad S(M), Gottlieb M (1998) Red microalga exopolysaccharides: 2. Study of the rheology, morphology and thermal gelation of aqueous preparations. Acta Polym 49:549–556Google Scholar
  48. Evans LV, Callow ME, Percival E, Fareed VS (1974) Studies on the synthesis and composition of extracellular mucilage in the unicellular red alga Rhodella. J Cell Sci 16:1–21Google Scholar
  49. Fabregas J, García D, Fernandez-Alonso M, Rocha AI, Gómez-Puertas P, Escribano JM, Otero A, Coll JM (1999) In vitro inhibition of the replication of viral haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir Res 44:67–73Google Scholar
  50. Fareed VS, Percival E (1977) The presence of rhamnose and 3-O-methylxylose in the extracellular mucilage from the red alga Rhodella maculata. Carbohydr Res 53:276–277Google Scholar
  51. Fernandes HL, Tomé MM, Lupi FM, Fialho AM, Sá-Correia I, Novais JM (1989) Biosynthesis of high concentrations of na exopolysaccharide during the cultivation of the microalga Botryococcus braunii. Biotechnol Lett 11(6):433–436Google Scholar
  52. Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190(2):235–248Google Scholar
  53. Ford CW, Percival E (1965a) The carbohydrates of Phaeodactylum tricornutum. Part I. Preliminary examination of the organism, and characterization of low molecular weight material and of a glucan. J Chem Soc 1298:7035–7041Google Scholar
  54. Ford CW, Percival E (1965b) The carbohydrates of Phaeodactylum tricornutum. Part II. A sulphated glucuronomannan. J Chem Soc 1299:7042–7046Google Scholar
  55. Franco JM, Raymundo A, Sousa I, Gallegos C (1998) Influence of processing variables on the rheological and textural properties of lupin protein-stabilized emulsions. J Agric Food Chem 46:3109–3115Google Scholar
  56. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482Google Scholar
  57. Garcia D, Morales E, Dominguez A, Fábregas J (1996) Productividad mixotrófica del exopolisacárido sulfatado com la microalga marina Porphyridium cruentum. Communicaciones del III Congreso Ibérico de Biotecnología – Biotec’96. Universidad de Valladolid (eds), pp 591–592Google Scholar
  58. Gardeva E, Toshkova R, Minkova K, Gigova L (2009) Cancer protective action of polysaccharide derived from microalga Porphyridium cruentum-a biological background. Biotechnol Biotechnol Equip 23:783–787Google Scholar
  59. Gasljevic K, Hall K, Chapman D, Matthys EF (2008) Drag-reducing polysaccharides from marine microalgae: species productivity and drag reduction effectiveness. J Appl Phycol 20:299–310Google Scholar
  60. Geresh S, Arad S(M) (1991) The extracellular polysaccharides of the red microalgae: chemistry and rheology. Bioresour Technol 38:195–201Google Scholar
  61. Geresh S, Dubinsky O, Arad S(M), Christian D, Glaser R (1990) Structure of 3-O-(α-d-glucopyranosyluronic acid)-l-galactopyranose, an aldobiuronic acid isolated from the polysaccharides of various unicellular red algae. Carbohydr Res 208:301–305Google Scholar
  62. Geresh S, Lupescu N, Arad S(M) (1992) Fractionation and partial characterization of the sulfated polysaccharide of the red alga Porphyridium sp. Phytochemistry 31(12):4181–4186Google Scholar
  63. Geresh S, Dawadi RP, Arad S(M) (2000) Chemical modifications of biopolymers: quaternization of the extracellular polysaccharide of the red microalga Porphyridium sp. Carbohydr Polym 63:75–80Google Scholar
  64. Geresh S, Adin I, Yarmolinsky E, Karpasas M (2002a) Characterization of the extracellular polysaccharide of Porphyridium sp.: molecular weight determination and rheological properties. Carbohydr Polym 50:183–189Google Scholar
  65. Geresh S, Mamontov A, Weinstein J (2002b) Sulfation of extracellular polysaccharides of red microalga: preparation, characterization, properties. J Biochem Biophys Methods 50:179–187Google Scholar
  66. Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2009) Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation. Glycobiology 19:2–15Google Scholar
  67. Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad S(M) (2000) Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol levels and modified fatty acids composition in egg yolk. J Appl Phycol 12:325–330Google Scholar
  68. Ginzberg A, Korin E, Arad S(M) (2008) Effect of drying on the biological activities of a red microalga polysaccharide. Biotechnol Bioeng 99(2):411–420Google Scholar
  69. Gloaguen V, Ruiz G, Morvan H, Mouradi-Givernaud A, Maes E, Krausz P, Srecker G (2004) The extracellular polysaccharide of Porphyridium sp.: an NMR study of lithium-resistant oligosaccharidic fragments. Carbohydr Res 339:97–103Google Scholar
  70. Glore SR, van Treeck D, Knehans AW, Guild M (1994) Soluble fiber and serum lipids: a literature review. J Am Dietetic Assoc 94(4):425–436Google Scholar
  71. Gouveia L, Batista A P, Sousa I, Raymundo A, Bandarra M (2008) Microalgae in novel food products. In: Papadopoulos KN (ed) Food chemistry research developments. Nova Science Publishers Inc., New York, USAGoogle Scholar
  72. Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja JM (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17:665–670Google Scholar
  73. Guzmán-Murillo MA, Ascencio F (2000) Anti-adhesive activity of sulphated exopolysaccharides of microalgae on attachment of the red sore disease-associated bacteria and Helicobacter pylori to tissue culture cells. Lett Appl Microbiol 30:473–478Google Scholar
  74. Hasui M, Matsuda M, Okutani K, Shigeta S (1995) In vitro antiviral activities of sulphated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped virus. Int J Biol Macromol 17(5):293–297Google Scholar
  75. Hayakawa Y, Hayashi T, Hayashi K, Osawa T, Niiya K, Sakuragawa N (1996) Heparin cofactor II-dependent antithrombin activity of calcium spirulan. Blood Coagul Fibrinolysis 7:554–560Google Scholar
  76. Hayakawa Y, Hayashi T, Hayashi K, Osawa T, Niiya K, Sakuragawa N (1997) Calcium spirulan as an inducer of tissue-type plasminogen activator in human fetal lung fibroblasts. Biochim Biophys Acta 1355(3):241–247Google Scholar
  77. Hayakawa Y, Hayashi T, Lee JB, Osawa T, Niiya K, Sakuragawa N (2000) Activation of heparin cofactor II by calcium spirulan. J Biol Chem 275:11379–11382Google Scholar
  78. Hayashi K, Hayashi T, Kojima IA (1996a) A natural sulphated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus. AIDS Res Hum Retroviruses 12:1463–1471Google Scholar
  79. Hayashi T, Hayashi K, Maeda M, Kojima I (1996b) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59(1):83–87Google Scholar
  80. Hernandez-Corona A, Nieves I, Meckes M, Chamorro G, Barron BL (2002) Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Res 56:279–285Google Scholar
  81. Heussner AH, Mazija L, Fastner J, Dietrich DR (2012) Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharmacol 265(2):263–271Google Scholar
  82. Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597Google Scholar
  83. Huang J, Chen B, You W (2005) Studies on separation of extracellular polysaccharide from Porphyridium cruentum and its anti-HBV activity in vitro. Chin J Mar Drugs (Chinese) 24:18–21Google Scholar
  84. Huang J, Liu L, Yu Y, Lin W, Chen B, Li M (2006) Reduction in the blood glucose level of exopolysaccharide of Porphyridium cruentum in alloxan-induced diabetic mice. J Fujian Norm Univ (Chinese) 22:77–80Google Scholar
  85. Huleihel M, Ishanu V, Tal J, Arad S(M) (2001) Antiviral effect of the red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J Appl Phycol 13:127–134Google Scholar
  86. Huleihel M, Ishanu V, Tal J, Arad S(M) (2002) Activity of Porphyridium sp. polysaccharide against Herpes simplex viruses in vitro and in vivo. J Biochem Biophys Methods 50:189–200Google Scholar
  87. Hung KM, Chiu ST, Wong MH (1996) Sludge-grown algae for culturing aquatic organisms.1. Algal growth in sludge extracts. Environ Manag 20(3):361–374Google Scholar
  88. Kaji T, Fujiwara Y, Hamada C, Yamamoto C, Shimada S, Lee JB, Hayashi T (2002) Inhibition of cultured bovine aortic endothelial cell proliferation by sodium spirulan, a new sulphated polysaccharide isolated from Spirulina platensis. Planta Med 68:505–509Google Scholar
  89. Kaji T, Okabe M, Shimada S, Yamamoto C, Fujiwara Y, Lee J-B, Hayashi T (2004) Sodium spirulan as a potent inhibitor of arterial smooth muscle cell proliferation in vitro. Life Sci 74:2431–2439Google Scholar
  90. Kaplan D, Christiaen D, Arad S(M) (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53(12):2953–2956Google Scholar
  91. Kenji LK, Kanekiyo K, Lee JB, Hayashi K, Takenaka H, Hayakawa Y, Endo S, Hayashi T (2005) Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod 68:1037–1041Google Scholar
  92. Kerkvliet JD (2001) Algen en zeewieren als levensmiddel: een overzicht. De Ware(n)chemicus 31:77–104Google Scholar
  93. Kieras JH (1972) Study of the extracellular polysaccharide of Porphyridium cruentum. PhD thesis, University of Chicago, Department of BiologyGoogle Scholar
  94. Kieras JH, Chapman D (1976) Structural studies on the extracellular polysaccharide of the red alga Porphyridium cruentum. Carbohydr Res 52:169–177Google Scholar
  95. Kim M, Yim JH, Kim S-Y, Kim HS, Lee WG, Kim SJ, Kang PS, Lee CK (2012) In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antivir Res 93:253–259Google Scholar
  96. Kojima M, Kasajima T, Imai Y, Kobayashi S, Dobashi M, Uemura T (1974) New Chlorella polysaccharide and its accelerating effect on the phagocytic activity of the reticuloendothelial system. Recent Adv Res 13:101–107Google Scholar
  97. Kroen WK, Rayburn WR (1984) Influence of growth status and nutrients on extracellular polysaccharide synthesis by the soil alga Chlamydomonas mexicana (Chlorophyceae). J Phycol 20(2):253–257Google Scholar
  98. Laroche C, Michaud P (2007) New developments and prospective applications for β-(1,3)-glucans. Recent Pat Biotechnol 1:59–73Google Scholar
  99. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465Google Scholar
  100. Lee J-B, Hayashi T, Hayashi K, Sankawa U, Maeda M, Nemoto T, Nakanishi H (1998) Further purification and structural analysis of calcium spirulan from Spirulina platensis. J Nat Prod 61:1101–1104Google Scholar
  101. Lee J-B, Hayashi T, Hayashi K, Sankawa U (2000) Structural analysis of calcium spirulan (Ca-SP)-derived oligosaccharides using electrospray ionization mass spectrometry. J Nat Prod 63:136–138Google Scholar
  102. Leiro JM, Castro R, Arranz JÁ, Lamas J (2007) Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 7:879–888Google Scholar
  103. Li P, Liu Z, Xu R (2001) Chemical characterization of the released polysaccharides from the cyanobacterium Aphanothece halophytica GR02. J Appl Phycol 13:71–77Google Scholar
  104. Li L-Y, Li L-Q, Guo C-H (2010) Evaluation of in vitro antioxidant and antibacterial activities of Laminaria japonica polysaccharides. J Med Plants Res 4(21):2194–2198Google Scholar
  105. Liu Y, Wang W, Zhang M, Xing P, Yang Z (2010) PSII-efficiency, polysaccharide production, and phenotypic plasticity of Scenedesmus obliquus in response to changes in metabolic carbon flux. Biochem Syst Ecol 38:292–299Google Scholar
  106. Loing E, Briatte S, Vayssier C, Beaulieu M, Dionne P, Richert L, Moppert X (2011) Cosmetic compositions comprising exopolysaccharides derived from microbial mats, and use thereof US 20110150795 A1Google Scholar
  107. Lupescu N, Arad S(M), Geresh S, Bernstein MA, Glaser R (1991) Structure of some sulfated sugars isolated after acid hydrolysis of the extracellular polysaccharide of Porphyridium sp., a unicellular red alga. Carbohydr Res 210:349–352Google Scholar
  108. Lupi FM, Fernandes HML, Sá-Correia I, Novais JM (1991) Temperature profiles of cellular growth and exopolysaccharide synthesis by Botryococcus braunii Kütz. UC 58. J Appl Phycol 3:35–42Google Scholar
  109. Marceliano MB (2009) Structure and function of polysaccharide gum-based edible films and coatings. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, DordrechtGoogle Scholar
  110. Marlett J (2001) Dietary fibre and cardiovascular disease. In: Cho SS, Dreher MD (eds) Handbook of dietary fibers. Marcel Dekker, New York, pp 17–30Google Scholar
  111. Martinez MJA, del Olmo LMB, Benito PB (2005) Antiviral activities of polysaccharides from natural sources. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 30. Elsevier B.V., London, pp 393–418Google Scholar
  112. Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12(2):1066–1101Google Scholar
  113. Matsui SM, Muizzudin N, Arad S(M), Marenus K (2003) Sulfated polysaccharides from red microalgae anti-inflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 104:13–22Google Scholar
  114. Mendiola JA, Jaime L, Santoyo S, Reglero G, Cifuentes A, Ibanez E, Senorans FJ (2007) Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chem 102:1357–1367Google Scholar
  115. Metting B, Rayburn WR (1983) The influence of a microalgal conditioner on selected Washington soils: an empirical study. Soil Sci Soc Am J 47:682–685Google Scholar
  116. Michael TM, John MM, Jack P (2002) Brock microbiology of microorganisms, 10th edn. Prentice Hall, New JerseyGoogle Scholar
  117. Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857Google Scholar
  118. Mišurcová L, Škrovánková S, Samek D, Ambrožová J, Machu L (2012) Health benefits of algal polysaccharides in human nutrition. Adv Food Nutr Res 66:75–145Google Scholar
  119. Mulloy B, Linhardt RJ (2001) Order out of complexity – protein structures that interact with heparin. Curr Opin Struct Biol 11:623–628Google Scholar
  120. Namikoshi M (1996) Bioactive compounds produced by cyanobacteria. J Int Microbiol Biotechnol 17:373–384Google Scholar
  121. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58(4):187–205Google Scholar
  122. Nilson HW, Wagner JA (1959) Feeding test with carrageenan. Food Res 24:235–239Google Scholar
  123. Noffz G (2011) Novel medical products: conventional biological or ATMPs? MSc thesis, University of Bonn, GermanyGoogle Scholar
  124. Nomoto K, Yokokura T, Satoh H, Mutai M (1983) Anti-tumor effect by oral administration of Chlorella extract, PCM-4 by oral admission (article in Japanese). Gan To Kagaku Zasshi 10:781–785Google Scholar
  125. Oakenfull D (2001) Physicochemical properties of dietary fiber: overview. In: Cho SS, Dreher MD (eds) Handbook of dietary fibers. Marcel Dekker, New York, pp 195–206Google Scholar
  126. Ofek L, Beachery EH, Sharon N (1978) Surface sugars recognition in bacterial adherence. Trends Biochem Sci 3:159–160Google Scholar
  127. Ogawa K, Yamaura M, Maruyama I (1997) Isolation and identification of 2-O-methyl-l-rhamnose and 3-O-methyl-l-rhamnose as constituents of an acidic polysaccharide of Chlorella vulgaris. Biosci Biotechnol Biochem 61(3):539–540Google Scholar
  128. Ogawa K, Yamaura M, Ikeda Y, Kondo S (1998) New aldobiuronic acid, 3-O-α-d-glucopyranuronosyl-l-rhamnopyranose, from an acidic polysaccharide of Chlorella vulgaris. Biosci Biotechnol Biochem 62(10):2030–2031Google Scholar
  129. Ogawa K, Ikeda Y, Kondo S (1999) A new trisaccharide, α-d-glucopyranuronosyl-(1→3)- α-l-rhamnopyranosyl-(1→2)- α-l-rhamopyranose from Chlorella vulgaris. Carbohydr Res 321:128–131Google Scholar
  130. Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102:143–152Google Scholar
  131. Parages ML, Rico RM, Abdala-Díaz RT, Chabrillón M, Sotiroudis TG, Jiménez C (2012) Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-α in RAW macrophages. J Appl Phycol 24(6):1537–1546Google Scholar
  132. Parnell JA, Reimer RA (2012) Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes 3:29–34Google Scholar
  133. Patchen ML, Lotzova E (1980) Modulation of murine hemopoiesis by glucan. Exp Hematol 8:409–422Google Scholar
  134. Patel AK, Laroche C, Marcati A, Ursu AV, Jubeau S, Marchal L, Petit E, Djelveh G, Michaud P (2013) Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour Technol 145:345–350Google Scholar
  135. Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnol Oceanogr 34:223–234Google Scholar
  136. Penna A, Berluti S, Penna N, Magnani M (1999) Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from Adriatic Sea. J Plankton Res 21(9):1681–1690Google Scholar
  137. Percival E, Foyle RAJ (1979) The extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum. Carbohydr Res 72:165–176Google Scholar
  138. Pereira MS, Vilela-Silva AC, Valente AP, Mourão PA (2002) A 2-sulfated,3-L-linked alpha-l-galactan is an anticoagulant polysaccharide. Carbohydr Res 337:2231–2238Google Scholar
  139. Pierre G, Sopena V, Juin C, Mastouri A, Graber M, Mangard T (2011) Antibacterial activity of a sulphated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol Bioproc Eng 16:937–945Google Scholar
  140. Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P (2013) Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol 40:781–796Google Scholar
  141. Pletikapic G, Radic TM, Zimmermann AH, Svetlicic V, Pfannkuchen M, Maric D, Godrjan J, Zutic V (2011) AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & JC Lewin. J Mol Recognit 24:436–445Google Scholar
  142. Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112Google Scholar
  143. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648Google Scholar
  144. Radonic A, Thulke S, Achenbach J, Kurth A, Vreemann A, König T, Walter C, Possinger K, Nitsche A (2010) Anionic polysaccharides from phototrophic microorganisms exhibit antiviral activities to Vaccinia virus. J Antivir Antiretrovir 2(4):51–55Google Scholar
  145. Ramus J, Robins DM (1975) The correlation of Golgi activity and polysaccharide secretion in Porphyridium. J Phycol 11:70–74Google Scholar
  146. Ramus J, Kenney BE, Shaughnessy EJ (1989) Drag-reducing properties of microalgal exopolymers. Biotechnol Bioeng 33:550–557Google Scholar
  147. Raposo MFJ, de Morais RMSC (2011) Chlorella vulgaris as soil amendment: influence of encapsulation and enrichment with rhizobacteria. Int J Agric Biol 13:719–724Google Scholar
  148. Raposo MFJ, Oliveira SE, Castro PM, Bandarra NM, Morais RM (2010) On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass. J Inst Brew 116(3):285–292Google Scholar
  149. Raposo MFJ, de Morais RMSC, de Morais AMMB (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae, a review. Mar Drugs 11(1):233–252Google Scholar
  150. Raposo MFJ, de Morais AMMB, de Morais RMSC (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101:56–63Google Scholar
  151. Rashid ZM, Lahaye E, Defer D, Douzenel P, Perrin B, Bourgougnon N, Sire O (2009) Isolation of a sulphated polysaccharide from a recently discovered sponge species (Celtodoryx girardae) and determination of its anti-herpetic activity. Int J Biol Macromol 44:286–293Google Scholar
  152. Raymundo A, Franco J, Gallegos C, Empis J, Sousa I (1998) Effect of thermal denaturation of lupin protein on its emulsifying properties. Nahrung 42:220–224Google Scholar
  153. Raymundo A, Gouveia L, Batista AP, Empis J, Sousa I (2005) Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein. Food Res Int 38:961–965Google Scholar
  154. Rechter S, König T, Auerochs S, Thulke S, Walter H, Dörnenburg H, Walter C, Marschall M (2006) Antiviral activity of Arthrospira-derived spirulan-like substances. Antiviral Res 72(3):197–206Google Scholar
  155. Rendueles O, Ghigo JM (2012) Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 36(5):972–989Google Scholar
  156. Rendueles O, Travier L, Latour-Lambert P, Fontaine T, Magnus J, Denamur E, Ghigo J (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. MBio 2:e00043–e00011. doi:10.1128/mBio.00043-11Google Scholar
  157. Riggi SJ, DiLuzio NR (1961) Identification of a reticuloendothelial stimulating agent in zymosan. Am J Physiol 200:297–300Google Scholar
  158. Rincé Y, Lebeau T, Robert JM (1999) Artificial cell-immobilization: a model simulating immobilization in natural environments? J Appl Phycol 11:263–272Google Scholar
  159. Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fisher AM, Helley D, Colliec-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681Google Scholar
  160. Senthilkumar K, Manivasagan P, Venkatesan J, Kim SK (2013) Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol 60C:366–374Google Scholar
  161. Sharma NK, Rai AK (2008) Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicol Environ Saf 69(1):158–162Google Scholar
  162. Shepherd R, Rockey J, Sutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40(3):207–217Google Scholar
  163. Shopen-Katz O, Ling E, Himelfarb Y, Lamprecht SA, Arad SM, Shany S (2000) The effect of Porphyridium sp. biomass and of its polysaccharide in prevention and inhibition of human colon cancer. Proceedings of the Int Conference in the Era of Biotechnology. Beer-Sheva, Israel, p 32Google Scholar
  164. Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA, Silva SS, Mano JF, Reis RL (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2(4):1–12Google Scholar
  165. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96Google Scholar
  166. Staats N, de Winder B, Stal LJ, Mur LR (1999) Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur J Phycol 34:161–169Google Scholar
  167. Stolz P, Obermayer B (2005) Manufacturing microalgae for skin care. Cosmet Toiletries 120:99–106Google Scholar
  168. Subramanian BS, Yan S, Tyagi RD, Surampalli RY (2010) Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification EPS characterization and performance for sludge settling and dewatering. Water Res 44:2253–2266Google Scholar
  169. Sun L (2010). Preparation of polysaccharides from Porphyridium cruentum and their biological activities. PhD thesis dissertation posted at Globethesis.com. http://www.globethesis.com/?t=1101360275957885 on 23 May 2010. Last assess 27 Jan
  170. Sun HH, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH, Chen YL, Xu J (2009a) Chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym 78:117–124Google Scholar
  171. Sun L, Wang C, Shi Q, Ma C (2009b) Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int J Biol Macromol 45:42–47Google Scholar
  172. Sun L, Wang L, Zhou Y (2012) Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr Polym 87:1206–1210Google Scholar
  173. Sutherland TF, Grant J, Amos CL (1998) The effect of carbohydrate production by the diatom Nitzschia curvilineata on the erodibility of sediment. Limnol Oceanogr 43:65–72Google Scholar
  174. Talyshinsky MM, Souprun YY, Huleihel MM (2002) Anti-viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell Int 2(8):1–7Google Scholar
  175. Tannin-Spitz T, Bergman M, van Moppes D, Grossman S, Arad S(M) (2005) Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J Appl Phycol 17:215–222Google Scholar
  176. Tao Y, Zhang L, Yan F, Wu X (2007) Chain conformation of water insoluble hyperbranched polysaccharide from fungus. Biomacromolecules 8:2321–2328Google Scholar
  177. Tiberg E, Einarsson R (1989) Variability of allergenicity in 8 strains of the green algal genus chlorella. Intl Arch Allergy Appl Immunol 90(3):301–306Google Scholar
  178. Trabelsi L, M’sakni NH, Ouada HB, Bacha H, Roudesli S (2009) Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol Bioprocess Eng 14:27–31Google Scholar
  179. Tzianabos AO (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 13(4):523–533Google Scholar
  180. Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo J (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci U S A 103:12558–12563Google Scholar
  181. van der Spiegel M, Noordam MY, van der Fels-Klerx HJ (2013) Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf 12(6):662–678Google Scholar
  182. Vieira VV, Morais RMSC (2008) Composições constituídas por polissacarídeos com actividade anti-viral e anti-adesão bacteriana, respectivas formulações, processo de elaboração das mesmas e suas utilizações. Portugal Patent 38122.08Google Scholar
  183. Vischer P, Buddecke E (1991) Different action of heparin and fucoidan on arterial smooth muscle cell proliferation and thrombospondin and fibronectin metabolism. Eur J Cell Biol 56:407–414Google Scholar
  184. Wetherbee R, Lind JL, Burke J, Quatrano RS (1998) The first kiss: establishment and control of initial adhesion by raphid diatoms. J Phycol 34:9–15Google Scholar
  185. White RC, Barber GA (1972) An acidic polysaccharide from the cell wall of Chlorella pyrenoidosa. Biochim Biophys Acta 264(1):117–128Google Scholar
  186. Whiteside PA (2011) Biotechnology medicinal products: back to basics. Regul Rapporteur 8:4–5Google Scholar
  187. Wijesekara I, Pangestuti R, Kim S-K (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84:14–21Google Scholar
  188. Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29:497–511Google Scholar
  189. Wong MH, Hung KM, Chiu ST (1996) Sludge-grown algae for culturing aquatic organisms: part II. Sludge-grown algae as feeds for aquatic organisms. Environ Manag 20(3):375–384Google Scholar
  190. www.vilastic.com. A structural view of rheology. Vilastic Scientifica. www.vilastic.com/tech4.html. Accessed 03 Apr 2012
  191. Xing RE, Yu HH, Liu S (2005) Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorg Med Chem 13(4):1387–1392Google Scholar
  192. Yamamoto C, Nakamura A, Shimada S, Kaji T, Lee J-B, Hayashi T (2003) Differential effects of sodium spirulan on the secretion of fibrinolytic proteins from vascular endothelial cells: enhancement of plasminogen activator activity. J Health Sci 49(5):405–409Google Scholar
  193. Yamamoto C, Fujiwara Y, Kaji T (2006) The biological effects of depolymerized sodium spirulan and sulfated colominic acid on vascular cells are beneficial in preventing atherosclerosis. J Health Sci 52(3):205–210Google Scholar
  194. Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK (2004) Antiviral effects of sulphated polysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol 6:17–25Google Scholar
  195. Yim JH, Son E, Pyo S, Lee HK (2005) Novel sulfated polysaccharide derived from red-tide microalga Gyrodinium impudicum strain KG03 with immunostimulating activity in vivo. Mar Biotechnol (NY) 7:331–338Google Scholar
  196. Yim JH, Kim SJ, Ahn SH, Lee HK (2007) Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresources Technol 98:361–367Google Scholar
  197. Zhou FG, Sun YP, Xin H, Zhang YN, Li ZE, Xu ZH (2004) In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol Res 50:47–53Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maria Filomena de Jesus Raposo
    • 1
  • Alcina Maria Miranda Bernardo de Morais
    • 1
  • Rui Manuel Santos Costa de Morais
    • 1
  1. 1.CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de BiotecnologiaUniversidade Católica Portuguesa/PortoPortoPortugal

Personalised recommendations