• André Sá Couto
  • Paulo Salústio
  • Helena Cabral-Marques
Living reference work entry


Cyclodextrins (CDs) were first isolated in 1891 as degradation products of starch from a medium of Bacillus amylobacter. They are cyclic water-soluble, nonreducing, macrocycle carbohydrate polymers constructed from α-(1-4)-linked d-glucopyranose units (naturally occurring α, β, and γ formed by 6, 7, and 8 glucose units), in a ring formation and present a toroidal, hollow, truncated cone shape. Their most important property is the ability to establish specific interactions – molecular encapsulation – with various types of molecules through the formation of non-covalently bonded entities, either in the solid phase or in aqueous solution, taking up a whole molecule, or some part of it, into their cavities. This process in part mimics the “lock and key” mechanism of enzyme catalysis. Complexation may cause changes in physicochemical properties of the guest molecule (e.g., solubility, stability, kinetics and bioavailability, toxicity). Their negligible cytotoxic effects promoted them to the GRAS list and led them to be widely used in many industrial products and technologies.


Cyclodextrin Cyclodextrin derivatives Complex formation Molecular encapsulation Applications Toxicity Pharmacokinetics 


  1. Almeida R, Cabral-Marques HM (2004) Pulmonary administration of beclomethasone: gamma-cyclodextrin complex. In: Duchêne D (ed) Proceedings of the 12th international cyclodextrin symposium, Montpellier. Editions de Santé/APGI Publishing, Paris, pp 889–892Google Scholar
  2. Al-Sharawi SZR, Ibrahim ASS, El-Shatoury EH, Gebreel HM, Eldiwany A (2013) A new low molecular mass alkaline cyclodextrin glucanotransferase from Amphibacillus sp. NRC-WN isolated from an Egyptian soda lake. Electron J Biotechnol 16:1–13Google Scholar
  3. Alves-Prado HF, Carneiro AAJ, Pavezzi FC, Gomes E, Boscolo M, Franco CML, da Silva R (2008) Production of cyclodextrins by CGTase from Bacillus clausii using different starches as substrates. Appl Biochem Biotechnol 146:3–13Google Scholar
  4. Antlsperger G, Schmid G (1996) Toxicological comparison of cyclodextrins. In: Szejtli J, Szente L (eds) Proceedings of the 8th international symposium on cyclodextrins, Budapest. Kluwer, Dordrecht, pp 149–155Google Scholar
  5. Aridogan BC, Baydar H, Kaya S, Demirci M, Ozbasar D, Mumcu E (2002) Antimicrobial activity and chemical composition of some essential oils. Arch Pharm Res 2:860–864Google Scholar
  6. Arima H, Tsutsumi T, Yoshimatsu A, Ikeda H, Motoyama K, Higashi T, Hirayama F, Uekama K (2011) Inhibitory effect of siRNA complexes with polyamidoamine dendrimer/α-cyclodextrin conjugate (generation 3, g3) on endogenous gene expression. Eur J Pharm Sci 44:375–384Google Scholar
  7. Babu RJ, Pandit JK (2004) Effect of cyclodextrins on the complexation and transdermal delivery of bupranolol through rat skin. Int J Pharm 271:155–165Google Scholar
  8. Bar R (1989) Cyclodextrin-aided bioconversions and fermentations. Trends Biotechnol 7:2–4Google Scholar
  9. Bas GL, Rysanek N (1987) Structural aspects of cyclodextrins. In: Duchêne D (ed) Cyclodextrins and their industrial uses. Editions de Santé, Paris, pp 107–130Google Scholar
  10. Bellringer ME, Smith TG, Read R, Gopinath C, Oliver P (1995) β-Cyclodextrin: 52-week toxicity studies in the rat and dog. Food Chem Toxicol 33:367–376Google Scholar
  11. Belščak-Cvitanović A, Stojanovićb R, Manojlović V, Komes D, Cindrić IJ, Nedović V, Bugarski B (2011) Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int 44:1094–1101Google Scholar
  12. Bender ML, Komiyama M (1978) Cyclodextrin chemistry. In: Springer-Verlag, BerlinGoogle Scholar
  13. Beraldo H, Sinisterra RD, Teixeira LR, Vieira RP, Doretto MC (2002) An effective anticonvulsant prepared following a host-guest strategy that uses hydroxypropyl-beta-cyclodextrin and benzaldehyde semicarbazone. Biochem Biophys Res Commun 296:241–246Google Scholar
  14. Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–662Google Scholar
  15. Cabral-Marques HM (1994a) Structure and properties of cyclodextrins. Inclusion complex formation. Rev Port Farm 44:77–84Google Scholar
  16. Cabral-Marques HM (1994b) Applications of cyclodextrins. Thermodynamic aspects of cyclodextrin complexes. Rev Port Farm 44:85–96Google Scholar
  17. Cabral-Marques HM (1994c) Cyclodextrins’ derivatives. Absorption, toxicity, metabolism and fate. Rev Port Farm 44:147–156Google Scholar
  18. Cabral-Marques HM (2008) Propriedades e Utilização das Ciclodextrinas como Transportadores de Fármacos/properties and uses of cyclodextrins as drug carriers. Rev Lusóf Ciên Tecnol Saúde 5:69–81Google Scholar
  19. Cabral-Marques HM (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326Google Scholar
  20. Cabral-Marques HM, Hadgraft J, Kellaway IW, Taylor G (1991) Studies of cyclodextrin inclusion complexes. Part IV. The pulmonary absorption of salbutamol from a complex with HP-beta-cyclodextrin in rabbits. Int J Pharm 77:303–307Google Scholar
  21. Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123:78–99Google Scholar
  22. Charoenchaitrakool M, Dehghani F, Foster NR (2002) Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-beta-cyclodextrin. Int J Pharm 239:103–112Google Scholar
  23. Cheirsilp B, Suleeporn K, Maneerat S (2010) Kinetic characteristics of β-cyclodextrin production by cyclodextrin glycosyltransferase from newly isolated Bacillus sp. C26. Electron J Biotechnol 13:1–8Google Scholar
  24. Chin TF, Chung PH, Lach JL (1968) J Pharm Sci 57:44Google Scholar
  25. Ciobanu A, Landy D, Fourmentin S (2013) Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res Int 53:110–114Google Scholar
  26. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582Google Scholar
  27. Cramer F (1982) Cyclodextrin – a paradigmatic model. In: Szejtli J (ed) Proceedings of I international symposium on cyclodextrins, Budapest. Reidel/Akadémiai Kiadó, Dordrecht/Budapest, pp 367–376Google Scholar
  28. Cramer F (1987) Cyclodextrins and their industrial uses. In: Duchêne D (ed) Introduction. Editions de Santé, Paris, pp 11–18Google Scholar
  29. Cramer F, Hettler H (1967) Naturwissenschaften 54:625Google Scholar
  30. Cramer F (1954) Einschlussverbindungen. Springer, BerlinGoogle Scholar
  31. Croft AP, Bartsch RA (1983) Synthesis of chemically modified cyclodextrins. Tetrahedron 39:1417–1474Google Scholar
  32. Daletos G, Papaioannou G, Miguel G, Cabral-Marques HM (2008) Improvement of organoleptic properties of thymol and carvacrol using β-cyclodextrin. In: Ueda H (ed) Proceedings of the 14th international cyclodextrin symposium, Kyoto. The Society of Cyclodextrins, Tokyo, pp 291–295Google Scholar
  33. Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095Google Scholar
  34. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035Google Scholar
  35. De Bie AT, Van Ommen B, Bar A (1998) Disposition of β-cyclodextrin in germ-free and conventional rats. Regul Toxicol Pharmacol 27:150–158Google Scholar
  36. De Repentigny L, Ratelle J, Leclerc JM, Cornu G, Sokal EM, Jacqmin P, De Beule K (1998) Repeated dose pharmacokinetics of an oral solution of itraconazole in infants and children. Antimicrob Agents Chemother 42:404–408Google Scholar
  37. Del Valle EMM (2003) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046Google Scholar
  38. Demerlis C, Goldring J, Velagaleti R, Brock W, Osterberg R (2009) Regulatory update: the IPEC novel excipient safety evaluation procedure. Pharm Technol 33:72–82Google Scholar
  39. Dona A, Pages G, Gilbert R, Kuchel P (2010) Digestion of starch: in vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr Polym 80:599–617Google Scholar
  40. Drumond N, Sá Couto A, Costa A, Cabral-Marques HM (2014) Study of aerodynamic and release properties of inhaled particles containing cyclodextrins. J Incl Phenom Macro Chem. doi:10.1007/s10847-014-0400-zGoogle Scholar
  41. Duchêne D, Wouessidjewe D (1990a) Pharmaceutical uses of cyclodextrins and derivatives. Drug Dev Ind Chem 16:2487–2499Google Scholar
  42. Duchêne D, Wouessidjewe D (1990b) Physicochemical characteristics and pharmaceutical uses of cyclodextrin derivatives, Part I. Acta Pharm Technol 14:26–34Google Scholar
  43. Duchêne D, Vaution C, Glomot F (1986) Cyclodextrins, their value in pharmaceutical technology. Drug Dev Ind Chem 12:2193–2215Google Scholar
  44. Eastburn SD, Tao BY (1994) Applications of modified cyclodextrins. Biotechnol Adv 12:325–339Google Scholar
  45. Endo T, Ueda H, Kobayashi S, Nagai T (1995) Isolation, purification and characterization of cyclomalto-dodecaose (η-CD). Carbohydr Res 269:369–373Google Scholar
  46. Endo T, Nagase H, Ueda H, Kobayashi S, Nagai T (1997a) Isolation, purification, and characterization of cyclomaltodecaose (ε-cyclodextrin), cyclomaltoundecaose (ζ-cyclodextrin) and cyclomaltotridecaose (θ-cyclodextrin). Chem Pharm Bull 45:532–536Google Scholar
  47. Endo T, Nagase H, Ueda H, Shigihara A, Kobayashi S, Nagai T (1997b) Isolation, purification, and characterization of cyclomaltotetradecaose (ι-cyclodextirn), cyclomaltopentadecaose (κ-cyclodextrin), cyclomaltohexadecaose (λ-cyclodextrin), and cyclomaltoheptadecaose (μ-cyclodextrin). Chem Pharm Bull 45:1856–1859Google Scholar
  48. Endo T, Nagase H, Ueda H, Shigihara A, Kobayashi S, Nagai T (1998) Isolation, purification and characterization of cyclomaltooctadecaose (ν-cyclodextrin), cyclomaltononadecaose (ξ-cyclodextrin), cyclomaltoeicosaose (ο-cyclodextrin) and cyclomaltoheneicosaose (π-cyclodextrin). Chem Pharm Bull 46:1840–1843Google Scholar
  49. Fages J, Rodier E, Chamaou A, Baron M (2007) Comparative study of two processes to improve the bioavailability of an active pharmaceutical ingredient: kneading and supercritical technology. Ec. des Mines d’Albi, RAPSODEE Res. Cent. 217:19Google Scholar
  50. Frank SG (1975) Inclusion compounds. J Pharm Sci 64:1585Google Scholar
  51. French D (1957) The Schardinger dextrins. Adv Carbohydr Chem 12:189–260Google Scholar
  52. French D, Pulley AO, Effenberger JA, Rougvie MA, Abdullah M (1965) Studies on the Schardinger dextrins. XII. The molecular size and structure of the delta-, epsilon-, zeta-, and eta-dextrins. Arch Biochem Biophys 111:153–160Google Scholar
  53. Freudenberg K, Cramer F (1948) Die Konstitution der Schardinger Dextrine a, b und g. Z Naturforsch B 3:464Google Scholar
  54. Freudenberg K, Meyer-Delius M (1938) Ber Dtsch Chem Ges 71:1596Google Scholar
  55. Freudenberg K, Plankenhorn E, Knauber H (1947) Chem Ind 731Google Scholar
  56. Frijlink HW, Visser J, Hefting NR, Oosting R, Meijer DK, Lerk CF (1990) The pharmacokinetics of β-cyclodextrin and hydroxypropyl-β-cyclodextrin in the rat. Pharm Res 7:1248–1252Google Scholar
  57. Frömming KH (1987) In: Breimer DD, Speiser P (eds) Topics in pharmaceutical sciences. Elsevier, Amsterdam, p 169Google Scholar
  58. Frömming KH, Szejtli J (1994) Cyclodextrins in pharmacy, Topics in inclusion science. Kluwer, DordrechtGoogle Scholar
  59. Frömming KH, Wedelich V, Mehnert W (1987) J Incl Phenom 5:625Google Scholar
  60. Fujiwara T, Tanaka N, Kobayashi S (1990) Structure of δ-cyclodextrin•13.75 H2O. Chem Lett 739–742Google Scholar
  61. Gamsiz ED, Thombre AG, Ahmed I, Carrier RL (2013) Model predicting impact of complexation with cyclodextrins on oral absorption. Biotechnol Bioeng 110:2536–2547Google Scholar
  62. Gerloczy A, Antal S, Szathmari I, Muller-Horvath R, Szejtli J (1990) Absorption, distribution and excretion of 14C-labelled hydroxypropyl β-cyclodextrin in rats following oral administration. In: Duchéne D (ed) 5th international symposium on cyclodextrins, Paris. March de Sante, Paris, pp 507–513Google Scholar
  63. Gil A, Chamayou A, Leverd E, Bougaret J, Baron M, Couarraze G (2004) Evolution of the interaction of a new chemical entity, eflucimibe, with γ-cyclodextrin during kneading process. Eur J Pharm Sci 23:123–129Google Scholar
  64. Gou J, Zou Y, Ahn J (2011) Enhancement of antioxidant and antimicrobial activities of Dianthus superbus, Polygonum aviculare, Sophora flavescens, and Lygodium japonicum by pressure-assisted water extraction. Food Sci Biotechnol 20:283–287Google Scholar
  65. Gould S, Scott R (2005) 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol 43:1451–1459Google Scholar
  66. Grosse PY, Bressolle F, Rouanet P, Joulia JM, Pinguet F (1999) Methyl-β-cyclodextrin and doxorubicin pharmacokinetics and tissue concentrations following bolus injection of these drugs alone or together in the rabbit. Int J Pharm 180:215–223Google Scholar
  67. Han SM (1997) Direct enantiomeric separations by high performance liquid chromatography using cyclodextrins. Biomed Chromatogr 11:259–271Google Scholar
  68. Hedges RA (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044Google Scholar
  69. Higashi T, Nishimura K, Yoshimatsu A, Ikeda H, Arima K, Motoyama K, Hirayama F, Uekama K, Arima H (2009) Preparation of four types of coenzyme Q10/gamma-cyclodextrin supramolecular complexes and comparison of their pharmaceutical properties. Chem Pharm Bull 57:965–970Google Scholar
  70. Higuchi T, Connors KA (1965) Phase-solubility techniques. Adv Anal Chem Instrum 4:117–212Google Scholar
  71. Hincal AA, Eroglu H, Bilensoy E (2011) Regulatory status of cyclodextrins in pharmaceutical products. In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetic, and biomedicine: current and future industrial applications. Wiley, HobokenGoogle Scholar
  72. Hirose T, Yamamoto Y (2001) Hinokitol containing cyclo-olefin polymer compositions and their molding with excellent antimicrobial and gas barrier properties. Japanese Patent JP 55480Google Scholar
  73. Ibrahim ASS, Al-Salamah AA, El-Tayeb MA, El-Badawi YB, Antranikian G (2012) A novel cyclodextrin glycosyltransferase from alkaliphilic Amphibacillus sp. NPST-10: purification and properties. Int J Mol Sci 13:10505–10522Google Scholar
  74. Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 86:147–162Google Scholar
  75. Ishibashi M, Kashikura A, Ozaki S, Kawakubo H (1999) Water absorbing sheet for packaging fresh product. Japanese Patent JP 11285368Google Scholar
  76. Jicsinszky L (2014) Cyclodextrin derivatives. CycloLab Cyclodextrin R&D Laboratory, Budapest. Accessed 10 June 2014
  77. Jones SP, Grant DJW, Hadgraft J, Parr GD (1984) Cyclodextrins in pharmaceutical sciences. Part I. Preparation, structure and properties of cyclodextrins and cyclodextrin inclusion compounds. Acta Pharm Tech 30:213–223Google Scholar
  78. Junco S, Casimiro T, Ribeiro N, Nunes P, Cabral-Marques HM (2002) A comparative study of naproxen-beta-cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J Incl Phenom Macro Chem 44:117–121Google Scholar
  79. Kitamura S (2000) Cyclic oligosaccharides and polysaccharides. In: Semlyen JA (ed) Cyclic polymers, 2nd edn. Kluwer, Dordrecht, p 125, Chapter 4Google Scholar
  80. Kleijn HJ, Zollinger DP, Van Den Heuvel MW, Kerbusch T (2011) Population pharmacokinetic-pharmacodynamic analysis for sugamadex-mediated reversal of rocuronium-induced neuromuscular blockade. Br J Clin Pharmacol 72:415–433Google Scholar
  81. Koizumi K, Sanbe H, Kubota Y, Terada Y, Takaha T (1999) Isolation and characterization of cyclic α-(1→4)-glucans having degrees of polymerization 9–31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 852:407–416Google Scholar
  82. Koo O (2011) Application challenges and examples of new excipients in advanced drug delivery systems. Am Pharm Rev 14:60–68Google Scholar
  83. Koutsou GA, Storey DM, Bär A (1999) Gastrointestinal tolerance of γ-cyclodextrin in humans. Food Addit Contam 16:313–317Google Scholar
  84. Kriaa M, Dorra Ayadi DZ, Jemli S, Sahnoun M, Bejar S, Kammoun R (2012) Improvement of cyclodextrin glycosyltransferase (CGTase) production by recombinant Escherichia coli pAD26 immobilized on the cotton. Biologia 67:1049–1055Google Scholar
  85. Kubota Y, Fukuda M, Muroguchi M, Koizumi K (1996) Absorption, distribution and excretion of β-cyclodextrin and glucosyl-β-cyclodextrin in rats. Biol Pharm Bull 19:1068–1072Google Scholar
  86. Kurkov SV, Loftsson T (2012) Cyclodextrins. Int J Pharm 453:167–180Google Scholar
  87. Larsen KL (2002) Large cyclodextrins. J Incl Phenom Macrocycl Chem 43:1–13Google Scholar
  88. Lederer M, Leipzig-Pagani E (1996) A simple alternative determination for the formation constant for the inclusion complex between rutin and β-cyclodextrin. Anal Chim Acta 329:311–314Google Scholar
  89. Li J, Loh X (2008) Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Del Rev 60:1000–1017Google Scholar
  90. Li JJ, Zhao F, Li J (2011) Supramolecular polymers based on cyclodextrins for drug and gene delivery. Adv Biochem Eng Biotechnol 125:207–249Google Scholar
  91. Lichtenthaler FW (2010) Carbohydrates: occurrence, structures and chemistry. In: Ullmann’s encyclopedia of industrial chemistry, 6th edn. Wiley-VCH, WeinheimGoogle Scholar
  92. Lina BAR, Bär A (2004a) Subchronic oral toxicity studies with α-cyclodextrin in rats. Regul Toxicol Pharmacol 39:S14–S26Google Scholar
  93. Lina BAR, Bär A (2004b) Subchronic (13-week) oral toxicity study of α- cyclodextrin in dogs. Regul Toxicol Pharmacol 39:S27–S33Google Scholar
  94. Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci 101:3019–3032Google Scholar
  95. Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11Google Scholar
  96. Loftsson T, Brewster ME, Másson M (2004) Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv 2:261–275Google Scholar
  97. Loftsson T, Hreinsdóttir D, Másson M (2005a) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28Google Scholar
  98. Loftsson T, Jarho P, Másson M, Järvinen T (2005b) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2:335–351Google Scholar
  99. Loftsson T, Jansook P, Stefánsson E (2012) Topical drug delivery to the eye: dorzolamide. Acta Ophthalmol 90:603–608Google Scholar
  100. Loung JH, Nguyen AL (1997) Achiral selectivity in cyclodextrin modified capillary electrophoresis. J Chromatogr A 792:431–444Google Scholar
  101. Mabuchi N, Ngoa M (2001) Controlled release powdered flavour preparations and confectioneries containing preparations. Japanese Patent JP 128638Google Scholar
  102. MacNicol DD, McKendrick JJ, Wilson DR (1978) Clathrates and molecular inclusion phenomenon. Chem Soc Rev 7:65–87Google Scholar
  103. Matsuda H, Arima H (1999) Cyclodextrins in transdermal and rectal delivery. Adv Drug Deliv Rev 36:81–99Google Scholar
  104. Menezes P, Serafini M, Santana B, Nunes R, Quintans L Jr, Silva G, Isac Medeiros I, Marchioro M, Fraga B, Santos M, Araújo A (2012) Solid-state β-cyclodextrin complexes containing geraniol. Thermochem Acta 548:45–50Google Scholar
  105. Menezes P, Serafini M, Quintans-Júnior L, Silva G, Oliveira J, Carvalho F, Souza J, Matos J, Alves P, Matos I, Hădărugă D, Araújo A (2014) Inclusion complex of (-)-linalool and beta-cyclodextrin. J Therm Anal Calorim 115:2429–2437Google Scholar
  106. Merkus FWHM, Verhoef JC, Marttin E, Romeijn SG, van der Kuy PHM, Hermens WAJJ, Schipper NGM (1999) Cyclodextrins in nasal drug delivery. Adv Drug Deliv Rev 36:41–57Google Scholar
  107. Miller LA, Carrier RL, Ahmed I (2007) Practical considerations in development of solid dosage forms that contain cyclodextrins. J Pharm Sci 96:1691–1707Google Scholar
  108. Miyazawa H, Ueda H, Nagase T, Endo T, Kobayashi S, Nagai T (1995) Physicochemical properties and inclusion complex formation of δ-cyclodextrin. Eur J Pharm Sci 3:153–162Google Scholar
  109. Monbaliu J, van Beijsterveldt L, Meuldermans W, Szathmary S (1990) Disposition of hydroxypropyl β-cyclodextrin in experimental animals. In: 5th international symposium on cyclodextrins. de Santé, Paris, pp 514–517Google Scholar
  110. Mora MM, Sánchez KH, Santana RV, Rojas AP, Ramírez HL, Torres-Labandeira JJ (2012) Partial purification and properties of cyclodextrin glycosiltransferase (CGTase) from alkalophilic Bacillus species. Springerplus 1:61Google Scholar
  111. Mosher GL, Thompson DO (2002) Complexation and cyclodextrins. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, 2nd edn. Marcel Dekker, New York, pp 531–558Google Scholar
  112. Munro IC, Newberne PM, Young RR, Bär A (2004) Safety assessment of γ-cyclodextrin. Regul Toxicol Pharmacol 39:S3–S13Google Scholar
  113. Nieddu M, Rassu G, Boatto G, Bosi P, Trevisi P, Giunchedi P, Carta A, Gavini E (2014) Improvement of thymol properties by complexation with cyclodextrins: in vitro and in vivo studies. Carbohydr Polym 102:393–399Google Scholar
  114. Nishikawa S, Nagata T, Morisaki I, Oka T, Ishida H (1996) Pathogenesis of drug-induced gingival overgrowth. A review of studies in the rat model. J Periodontol 67:463–471Google Scholar
  115. Osterberg R, Demerlis C, Hobson D, Mcgovern T (2011) Trends in excipient safety evaluation. Int J Toxicol 30:600–610Google Scholar
  116. Pilcer G, Amighi K (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392:1–19Google Scholar
  117. Pinho E, Grootveld M, Soares G, Henriques M (2013) Cyclodextrin-based hydrogels toward improved wound dressings. Crit Rev Biotechnol Crit Rev B 1–10Google Scholar
  118. Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135Google Scholar
  119. Pitha J, Szente L, Szejtli J (1983) Molecular encapsulation of drugs by cyclodextrins and congeners. In: Bruck SD (ed) Controlled drug delivery, vol 1. CRC Press, Boca Raton, pp 125–148Google Scholar
  120. Powell HM (1954) J Chem Soc 2658Google Scholar
  121. Powell HM (1948) J Chem Soc 61Google Scholar
  122. Prasad N, Strauss D, Reichart G (1999) Cyclodextrins inclusion for food, cosmetics and pharmaceuticals. European Patent 1084625Google Scholar
  123. Pulley OA, French D (1961) Studies on the Schardinger dextrins. XI. The isolation of new Schardinger dextrins. Biochem Biophys Res Commun 5:11–15Google Scholar
  124. Răileanu M, Todan L, Voicescu M, Ciuculescu C, Maria Maganu M (2013) A way for improving the stability of the essential oils in an environmental friendly formulation. Mater Sci Eng C 33:3281–3288Google Scholar
  125. Ramalhete N, Afonso R, Almeida R, Cabral-Marques HM (2001) The effect of formulation variables on the aerosol performance of spray-dried insulin. In: 1st international pharmaceutical congress, 2nd Mediterranean conference on drug controlled release, 10th Panhellenic pharmaceutical congress. New perspectives in controlled release, AtenasGoogle Scholar
  126. Rao VRS, Foster JF (1963) On the conformation of the D-glucopyranose ring in maltose and in higher polymers of D-glucose. J Phys Chem 67:951–952Google Scholar
  127. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1917Google Scholar
  128. Rendleman JA Jr (1999) The production of cyclodextrins using CGTase from Bacillus macerans. In: Bucke C (ed) Carbohydrate biotechnology protocols, methods in biotechnology, vol 10. Humana Press, Totowa, pp 89–101Google Scholar
  129. Reuscher H, Hinsenkorn R (1996) BETA W7 MCT-new ways in surface modification. J Incl Phenom Macrocycl Chem 25:191–196Google Scholar
  130. Robyt JF (1998) Essentials of carbohydrate chemistry. Springer, BerlinGoogle Scholar
  131. Romi R, Lo Nostro P, Bocci E, Ridi F, Baglioni P (2005) Bioengineering of a cellulosic fabric for insecticide delivery via grafted cyclodextrin. Biotechnol Prog 21:1724–1730Google Scholar
  132. Rosso AM, Ferrarotti SA, Krymkiewicz N, Nudel BC (2002) Optimisation of batch culture conditions for cyclodextrin glucanotransferase production from Bacillus circulans DF 9R. Microb Cell Fact 3:1–9Google Scholar
  133. Sá Couto A, Vieira J, Florindo HF, Videira MA, Cabral-Marques HM (2014) Characterisation of DM-β-cyclodextrin:prednisolone complexes and their formulation as eye drops. J Incl Phenom Macrocycl Chem. doi:10.1007/s10847-014-0420-8Google Scholar
  134. Saenger W (1980) Cyclodextrin inclusion compounds in research and industry. Angew Chem Int Ed Engl 19:344–362Google Scholar
  135. Saenger W (1982) Structure aspects of cyclodextrin inclusion compounds. In: Szejtli J (ed) Proceedings of I international symposium on cyclodextrins, Budapest, 1981. Reidel/Akadémiai Kiadó, Dordrecht/Budapest, pp 141–150Google Scholar
  136. Saito Y, Tanemura I, Sato T, Ueda H (1999) Interaction of fragrance materials with 2-hydroxypropyl-beta-cyclodextrin by static and dynamic head-space methods. Int J Cosmet Sci 21:189–198Google Scholar
  137. Salústio PJ, Pontes P, Conduto C, Sanches I, Carvalho C, Arrais J, Cabral-Marques HM (2011) Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS PharmSciTech 12:1276–1292Google Scholar
  138. Salústio PJ, Feio G, Figueirinhas J, Pinto J, Cabral-Marques HM (2009) The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity. Eur J Pharm Biopharm 71:377–386Google Scholar
  139. Santos AL, Gouveia E, Cabral-Marques HM (2004) Cyclodextrins salicylic acid formulation for psoriasis treatment. In: Duchêne D (ed) Proceedings of the 12th international cyclodextrin symposium (Montpellier, France). Editions de Santé/APGI Publishing, Paris, pp 885–888Google Scholar
  140. Sapkal N, Kilor V, Bhusari K, Daud (2007) Evaluation of some methods for preparing gliclazide- β-cyclodextrin inclusion complexes. Trop J Pharm Res 6:833–840Google Scholar
  141. Schardinger F (1903a) Uber die Zulässigkeit des Warmhaltens von zum Gebuß bestimmten Nahrungsmittel mittelst Wärme speichernder Apparate, sog. Thermopore. Wien Klin Wochenschr 468–474Google Scholar
  142. Schardinger F (1903b) Über Thermophile Bakterien aus verschiedenen Speisen und Milch, sowie über einige Umsetzungsprodukte derselben in kohlenhydrathaltigen Nährlösungen, darunter krystallisierte Polysaccharide (Dextrine) aus Stärke. Z Untersuch Nahr Genussm 6:865–880Google Scholar
  143. Schardinger F (1904) Wien Klin Wochenschr 17:207–209Google Scholar
  144. Schardinger F (1911) Bildung kristallisierter Polysaccharide (Dextrine) aus Stärkekleister durch Microben. Zentralbl Bakteriol Parasitenk Abt II 29:188–197Google Scholar
  145. Shahrazi S, Saallah S, Mokhtar MN, Baharuddin AS, Md Yunos KF (2013) Dynamic mathematical modelling of reaction kinetics for cyclodextrins production from different starch sources using Bacillus macerans cyclodextrin glucanotransferase. Am J Biochem Biotechnol 9:195–205Google Scholar
  146. Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20:341–359Google Scholar
  147. Singh R, Mishra S, Kumar N (2010) Optimization of α-amylase production on agriculture byproduct by Bacillus cereus MTCC 1305 using solid state fermentation. Res J Pharm Biol Chem Sci 1:867Google Scholar
  148. Sivakumar N, Shakilabanu S (2013) Production of cyclodextrin glycosyltransferase by Bacillus megaterium. Int J Curr Microbiol App Sci 2:44–55Google Scholar
  149. Slain D, Rogers PD, Cleary JD, Chapman SW (2001) Intravenous itraconazole. Ann Pharmacother 35:720–729Google Scholar
  150. Sollogoub M (2013) Site-selective heterofunctionalization of cyclodextrins: discovery, development and use in catalysis. Synlett 24:2629–2640Google Scholar
  151. Stella VJ, He Q (2008) Cyclodextrins. Toxicol Pathol 36:30–42Google Scholar
  152. Stella VJ, Rajewski RA (1997) Cyclodextrins: their future in drug formulation and delivery. Pharm Res 14:556–557Google Scholar
  153. Stevens DA (1999) Itraconazole in cyclodextrin solution. Pharmacotherapy 19:603–611Google Scholar
  154. Sun DZ, Li L, Qiu XM, Liu F, Yin B-L (2006) Isothermal titration calorimetry and 1H NMR studies on host-guest interaction of paeonol and two of its isomers with β- cyclodextrin. Int J Pharm 316:7–13Google Scholar
  155. Szathmary SC, Seiler K-U, Luhmann I, Huss H-J (1990) Pharmacokinetic behavior and absolute bioavailability of hydroxypropyl β-cyclodextrin after increasing dosing in volunteers. In: Duchéne D (ed) 5th international symposium on cyclodextrins. de Sante, Paris, pp 535–540Google Scholar
  156. Szejtli J (1982) Cyclodextrin and their inclusion complexes. Akadémiai Kiadó, Budapest, pp 13 and 94–109Google Scholar
  157. Szejtli J (1989) Downstream processing using cyclodextrins. Trends Biotechnol 7:171–174Google Scholar
  158. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753Google Scholar
  159. Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76:1825–1845Google Scholar
  160. Szejtli J (2005) Cyclodextrin complexed generic drugs are generally not bio-equivalent with the reference products: therefore the increase in number of marketed drug/cyclodextrin formulations is so slow. J Incl Phenom Macro Chem 52:1–11Google Scholar
  161. Szejtli J (1985) Molecular entrapment and release properties of drugs by cyclodextrins. In: Smolen, VF, Ball LA (Eds.), Controlled Drug Bioavailability, Vol. 3, Wiley, New York, pp. 365–420Google Scholar
  162. Szejtli J (1988) Cyclodextrin technology. Kluwer, Dordrecht, p 450Google Scholar
  163. Szente L, Fenyvesi E, Szejtli J (1999) Entrapment of iodine with cyclodextrins-potential application of cyclodextrins in nuclear waste management. Environ Sci Technol 24Google Scholar
  164. WHO Technical Report Series (2002) Evaluation of certain food additives and contaminants, vol 909Google Scholar
  165. Thombre RS, Kanekar PP (2013) Synthesis of β- cyclodextrin by cyclodextrin glycosyltransferase produced by Bacillus licheniformis MCM–B 1010. J Microbiol Biotech Res 3:57–60Google Scholar
  166. Thompson DO (1997) Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug Carrier Syst 14:1–104Google Scholar
  167. Tiwari G, Tiwari R, Rai AK (2010) Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci 2:72–79Google Scholar
  168. Torres Marques M, Baptista AMJ, Cabral-Marques HM, Chitas IJ, Rodrigues de Carvalho M (1996) Método para aumentar a solubilidade e a estabilidade do cloranfenicol, através da formação de complexos de inclusão com ciclodextrinas, soluções contendo o referido complexo de inclusão e processo para separação dessas soluções. Portuguese Patent nr. 101Google Scholar
  169. Totterman AM, Schipper NG, Thompson DO, Mannermaa JP (1997) Intestinal safety of water-soluble -cyclodextrins in paediatric oral solutions of spironolactone: effects on human intestinal epithelial Caco-2 cells. J Pharm Pharmacol 49:43–48Google Scholar
  170. Ueda H, Ishii E, Motohama S, Endo T, Nagase H, Takaha T, Okada S (2000) Proceedings of the 10th international cyclodextrin symposium, Ann Arbor, 21–24 MayGoogle Scholar
  171. Uekama K (1981) In: Yakugaku Zasshi, p 857Google Scholar
  172. Uekama K (2004) Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull 52:900–915Google Scholar
  173. Uekama K, Otagiri M (1987) Cyclodextrins in drug carrier systems. In: Bruck SD (Ed.), Critical Reviews in Therapeutic Drug Carrier Systems, CRC Press, Boca Raton, 3:1–40Google Scholar
  174. Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98:2045–2076Google Scholar
  175. Urban M, Beran M, Adámek L, Drahorád J, Molík P, Matušová K (2012) Cyclodextrin production from amaranth starch by cyclodextrin glycosyltransferase produced by Paenibacillus macerans CCM 2012. Czech J Food Sci 30:15–20Google Scholar
  176. Van Ommen B, De Bie AT, Bar A (2004) Disposition of 14C-α-cyclodextrin in germ-free and conventional rats. Regul Toxicol Pharmacol 39:57–66Google Scholar
  177. Villiers A (1891) Sur la fermentation de la fécule par l’action du ferment butyrique. C R Acad Sci 112:536–538Google Scholar
  178. Von Mach MA, BurhenneJ, Weilemann LS (2006) Accumulation of the solvent vehicle sulphobutyl β cyclodextrin sodium in critically ill patients treated with intravenous voriconazole under renal replacement therapy. BMC Clin Pharmacol 6Google Scholar
  179. Vozone C, Cabral-Marques HM (2002) Complexation of budesonide in cyclodextrins and particle aerodynamic characterization of its solid form for dry powder inhalation. J Incl Phenom 44:111–115Google Scholar
  180. Waleczek K, Cabral-Marques HM, Hempel B, Schmidt P (2003) Phase solubility studies of pure (2)-α-bisabolol and camomile essential oil with β-cyclodextrin. Eur J Pharm Biopharm 55:247–251Google Scholar
  181. Wang Z, Qi Q, Wang PG (2006) Engineering of cyclodextrin glucanotransferase on the cell surface of Saccharomyces cerevisiae for improved cyclodextrin production. Appl Env Microbiol 72:1873–1877Google Scholar
  182. Wang K, Yan Y, Zhao G, Xu W, Dong K, You C, Zhanga L, Xing J (2014) In vitro and in vivo application of hydroxypropyl-β-cyclodextrin-grafted polyethylenimine used as a transdermal penetration enhancer. Polym Chem 5:4658–4669Google Scholar
  183. Yano H, Kleinebudde P (2010) Improvement of dissolution behavior for poorly water-soluble drug by application of cyclodextrin in extrusion process: comparison between melt extrusion and wet extrusion. AAPS PharmSciTech 11:885–893Google Scholar
  184. Yoshida A, Arima H, Uekama K, Pitha J (1988) Pharmaceutical evaluation of hydroxyalkyl ethers of b-cyclodextrins. Int J Pharm 46:217–222Google Scholar
  185. Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233Google Scholar
  186. Zhao X, Courtney JM (2006) Surface modification of polymeric biomaterials: utilization of cyclodextrins for blood compatibility improvement. J Biomed Mater Res A 80:539–553Google Scholar
  187. Zhekova BY, Stanchev VS (2011) Reaction conditions for maximal cyclodextrin production by cyclodextrin glucanotransferase from Bacillus megaterium. Pol J Microbiol 60:113–118Google Scholar
  188. Zhou H, Goldman M, Wu J, Woestenborghs R, Hassell AE, Lee P, Baruch A, Pesco-Koplowitz L, Borum J, Wheat LJ (1998) A pharmacokinetic study of intravenous itraconazole followed by oral administration of itraconazole capsules in patients with advanced human immunodeficiency virus infection. J Clin Pharmacol 38:593–602Google Scholar
  189. Zuo Z, Tam YK, Diakur J, Wiebe LT (2002) Hydroxypropyl-β-cyclodextrin-flutamide inclusion complex. II. Oral and intravenous pharmacokinetics of flutamide in the rat. J Pharm Sci 5:292–298Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • André Sá Couto
    • 1
  • Paulo Salústio
    • 1
  • Helena Cabral-Marques
    • 1
  1. 1.Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de FarmáciaUniversidade de LisboaLisboaPortugal

Personalised recommendations