Advertisement

Fundamental Aspects of Coronal Mass Ejections

  • Carlos Alexandre WuenscheEmail author
Living reference work entry

Abstract

The most violent frequently reoccurring events in the solar system are coronal mass ejections. During a high energy cycle of the Sun, or solar max, these can happen as often as six times a day. If the most extreme of these events are focused so they directly impact Earth, the force of impact can be the equivalent of a huge number of nuclear bombs that can generate an electromagnetic pulse (EMP) with devastating effect. Such a pulse could cripple the world’s electrical grids and knock out most satellites in orbit. This chapter describes the so-called CME phenomenon and current understanding of why and how they occur. The final element of the chapter discusses the Earth’s naturally occurring protective systems that minimize the impact of these otherwise deadly occurrences.

Keywords

Advanced Composition Explorer (ACE) Corona Coronagraph Coronal mass ejection (CME) Electromagnetic pulse (EMP) Eleven-year solar max/solar minimum cycle Global Geospace Science (GGS) WIND satellite Helioscope Heliosphere Large Angle and Spectrometric Coronagraph Experiment (LASCO) Magnetosphere Photosphere Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) Skylab SMM Solar Dynamics Observatory (SDO) Solar and Heliospheric Observatory (SOHO) Solar maximum/solar minimum Solar Maximum Mission (SMM) satellite Solar system Solar TErrestrial RElations Observatory (STEREO) Transition Region and Coronal Explorer (TRACE) satellite CACTus (Computer Aided CME Tracking) 

References

  1. Aschwanden MJ, Nitta NV, Wåulser J-P, Lemen JR, Sandman A, Vourlidas A, Colaninno RC (2009) First measurements of the mass of coronal mass ejections from the EUV dimming observed with STEREO EUVI A+B spacecraft. Astrophys J 706:376–392CrossRefGoogle Scholar
  2. Berkeley Center for Science Education – Multiverse. Exploring magnetism in solar flares. http://cse.ssl.berkeley.edu/segwayed/lessons/exploring_magnetism/in_Solar_Flares/s4.html. Last access 1 Mar 2014
  3. Burkepile JT et al (2004) Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. J Geophys Res Space Phys 109(A3):CiteID A03103Google Scholar
  4. Cargill PJ (2004) On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol Phys 221:135–149CrossRefGoogle Scholar
  5. Chen J (1996) Theory of prominence eruption and propagation: interplanetary consequences. J Geophys Res 101:27499–27519CrossRefGoogle Scholar
  6. Chen PF (2011) Coronal mass ejections: models and their observational basis. Living Rev Sol Phys 8(1):1–92zbMATHGoogle Scholar
  7. Colaninno RC, Vourlidas A (2009) First determination of the true mass of coronal mass ejections: a novel approach to using the two STEREO viewpoints. Astrophys J 698:852–858CrossRefGoogle Scholar
  8. Davies JA et al (2009) A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophys Res Lett 36(L02102)Google Scholar
  9. DeForest CE et al (2011) Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2, Astrophys J 738:103–115Google Scholar
  10. Dryer M, Smart DF (1984) Dynamical models of coronal transients and interplanetary disturbances. Adv Space Res 4:291–301CrossRefGoogle Scholar
  11. Fry CD, Sun W, Deehr CS, Dryer M, Smith Z, Akasofu S-I, Tokumaru M, Kojima M (2001) Improvements to the HAF solar wind model for space weather predictions. J Geophys Res 106:20985–21001CrossRefGoogle Scholar
  12. Gopalswamy N (2004) A global picture of CMEs in the inner heliosphere. In: Poletto G, Suess ST (eds) The sun and the heliosphere as an integrated system, vol 317, Astrophysics and space science library. Kluwer, Dordrecht/Boston, pp 201–251CrossRefGoogle Scholar
  13. Gopalswamy N (2010) The CME link to geomagnetic storms. In: Kosovichev AG, Andrei AH, Roelot J-P (eds) Solar and stellar variability: impact on earth and planets. IAU symposia, vol 264, Brazil, 3–7 Aug 2009. Cambridge University Press, Cambridge/New York, pp 326–335Google Scholar
  14. Gopalswamy N, Kundu MR (1993) Structure of a fast coronal mass ejection from radio observations. Adv Space Res 13:75–78CrossRefGoogle Scholar
  15. Gopalswamy N, Lara A, Yashiro S, Nunes S, Howard RA (2003) Coronal mass ejection activity during solar cycle 23. In: Wilson A (ed) Solar variability as an input to the Earth’s environment, International Solar Cycle Studies (ISCS) symposium. ESA special publication, vol SP-535, Tatranska Lomnica, 23–28 June 2003. ESA, Publications Division, Noordwijk, pp 403–414Google Scholar
  16. Gopalswamy N, Xie H, Yashiro S, Usoskin IG (2005) Coronal mass ejections and ground level enhancements. In: Sripathi Acharya B et al (ed) Proceedings of the 29th international cosmic ray conference, vol 1, Pune, 3–10 Aug 2005. Tata Institute of Fundamental Research, Mumbai, pp 169–172Google Scholar
  17. Gopalswamy N, Mikic Z, Maia D, Alexander D, Cremades H, Kaufmann P, Tripathi D, Wang Y-M (2006) The pre-CME Sun. Space Sci Rev 123:303–339CrossRefGoogle Scholar
  18. Harrison RA et al (2008) First imaging of coronal mass ejections in the heliosphere viewed from outside the sun-earth line. Solar Phys 247:171–193Google Scholar
  19. Holman G Space weather: what impact do solar flares have on human activities? Source: http://hesperia.gsfc.nasa.gov/sftheory/spaceweather.htm. Last access 1 Mar 2014
  20. Howard TA (2011) Three-dimensional reconstruction of coronal mass ejections using heliospheric imager data. J Atmos Sol Terr Phys 73:1242–1253CrossRefGoogle Scholar
  21. Howard TA et al (2006) Tracking halo coronal mass ejections from 0-1 AU and space weather forecasting using the Solar Mass Ejection Imager (SMEI). J Geophy Res: Space Physics 111(A4)Google Scholar
  22. Howard TA et al (2007) On the evolution of coronal mass ejections in the interplanetary medium. The Astrophysical Journal 667(1):610–625Google Scholar
  23. Howard TA, Tappin SJ (2010) Application of a new phenomenological coronal mass ejection model to space weather forecasting. Space Weather 8, S07004CrossRefGoogle Scholar
  24. Hudson HS, Webb DF (1997) Soft X-ray signatures of coronal ejections. In: Crooker N, Joselyn JA, Feynman J (eds) Coronal mass ejections, vol 99, Geophysical monograph. American Geophysical Union, Washington, DC, pp 27–38CrossRefGoogle Scholar
  25. Hundhausen AJ (1999) Coronal mass ejections. In: Strong KT, Saba JIR, Haisch BM, Schmelz JT (eds) The many faces of the sun: A summary of the results from NASA’s solar maximum mission. Springer-Verlag, New York, pp. 143Google Scholar
  26. Jackson BV (1992) Remote sensing observations of mass ejections and shocks in interplanetary space. In ˇSvestka Z, Jackson BV, Machado ME (eds) Eruptive solar flares, proceedings of colloquium no 133 of the international astronomical union, held at Iguaz.u, Argentina, 2–6 Aug 1991. Lecture notes in physics, vol 399. Springer, Berlin/New York, pp 248–257Google Scholar
  27. Jackson BV, Buffington A, Hick PP, Clover JM, Bisi MM, Webb DF (2010) SMEI 3-D reconstruction of a coronal mass ejection interacting with a corotating solar wind density enhancement: the 2008 April 26 CME. Astrophys J 724:829–834CrossRefGoogle Scholar
  28. Lugaz N, Hernandez-Charpak JN, Roussev II, Davis CJ, Vourlidas A, Davies JA (2010) Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys J 715:493–499CrossRefGoogle Scholar
  29. Manchester WB IV, Gombosi TI, De Zeeuw DL, Sokolov IV, Roussev II, Powell KG, Kota J, Toth G, Zurbuchen TH (2005) Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophys J 622:1225–1239CrossRefGoogle Scholar
  30. Manoharan PK (2010) Ooty interplanetary scintillation – remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys 265:137–157CrossRefGoogle Scholar
  31. Mittal N, Narain U (2010) Initiation of CMEs: a review. J Atmos Sol Terr Phys 72:643–652CrossRefGoogle Scholar
  32. Phillips T Solar shield: protecting the North American power grid. NASA Science News. http://science.nasa.gov/science-news/science-at-nasa/2010/26oct_solarshield/. Last access 1 Mar 2014
  33. Pick M, Vilmer N (2008) Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun–Earth connection. Astron Astrophys Rev 16:1–153CrossRefGoogle Scholar
  34. Plunkett SP et al (2000) Simultaneous SOHO and Ground-Based Observations of a Large Eruptive Prominence and Coronal Mass Ejection. Sol Phys 194:371–391CrossRefGoogle Scholar
  35. Pulkkinen T (2007) Space weather: terrestrial perspective. Living Rev Sol Phys 4:1Google Scholar
  36. Robbrecht E et al (2009) Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant. Astrophys J 691:1222–1234CrossRefGoogle Scholar
  37. Rust DM (2003) The helicial flux rope structure of solar filaments. Advances in Space Research 32(10):1895–1903 (AdSpR Homepage)Google Scholar
  38. Saito K, Tandberg-Hanssen E (1973) The Arch Systems, Cavities, and Prominences in the Helmet Streamer Observed at the Solar Eclipse, November 12, 1966. Solar Physics 31(1):105–121 (SoPh Homepage)Google Scholar
  39. Smith Z, Dryer M (1990) MHD study of temporal and spatial evolution of simulated interplanetary shocks in the ecliptic plane within 1 AU. Sol Phys 387–405:12Google Scholar
  40. St Cyr OC et al (2000) Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J Geophys Res 105(A8):18169–18186CrossRefGoogle Scholar
  41. Tappin SJ (2006) The deceleration of an interplanetary transient from the Sun to 5 AU. Sol Phys 233:233–248CrossRefGoogle Scholar
  42. Tappin SJ, Howard TA (2010) Reconstructing CME structures from IPS observations using a phenomenological model. Sol Phys 265:159–186CrossRefGoogle Scholar
  43. Tousey R (1973) The solar corona. In: Rycroft MJ, Runcorn SK (eds) Space research XIII, proceedings of open meetings of working groups on physical sciences of the 15th plenary meeting of COSPAR, Madrid, 10–24 May 1972. Akademie, Berlin, pp 713–730Google Scholar
  44. Vourlidas A, Buzasi D, Howard RA, Esfandiari E (2002) Mass and energy properties of LASCO CMEs. In: Wilson A (ed) Solar variability: from core to outer frontiers, proceedings of the 10th European solar physics meeting, Prague, 9–14 Sept 2002. ESA, vol SP-506Google Scholar
  45. Vourlidas A, Howard RA, Esfandiari E, Patsourakos S, Yashiro S, Michalek G (2010) Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys J 722:1522–1538CrossRefGoogle Scholar
  46. Vourlidas A, Howard RA, Esfandiari E, Patsourakos S, Yashiro S, Michalek G (2011) Erratum: comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys J 730:59CrossRefGoogle Scholar
  47. Webb DF, Howard TA (2012) Coronal mass ejections: observations. Living Rev Sol Phys 9:3Google Scholar
  48. Webb DF, Howard RA (1994) The solar cycle variation of coronal mass ejections and the solar wind mass flux. J. Geophys. Res 99(A3):4201–4220Google Scholar
  49. Webb DF et al (2006) Solar Mass Ejection Imager (SMEI) observations of coronal mass ejections (CMEs) in the heliosphere. J Geophys Res: Space Physics 111(A12)Google Scholar
  50. Wood BE, Howard RA (2009) An empirical reconstruction of the 2008 April 26 coronal mass ejection. Astrophys J 702:901–910CrossRefGoogle Scholar
  51. Wu ST et al (2001) Numerical magnetohydrodynamic (MHD) modeling of coronal mass ejections (CMEs). Space Sci. Rev 95:191Google Scholar
  52. Yashiro S, Gopalswamy N, Michalek G, St Cyr OC, Plunkett SP, Rich NB, Howard RA (2004) A catalog of white light coronal mass ejections observed by the SOHO spacecraft”. J Geophys Res 109:A07105Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.INPESão José dos CamposBrazil

Personalised recommendations