Encyclopedia of Geodesy

Living Edition
| Editors: Erik Grafarend

Multi-GNSS Positioning

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-02370-0_142-1


Multi-Global Navigation Satellite System (GNSS) positioning . Combination of GNSSs for precise positioning on Earth.


The emerging multiple-frequency Global/Regional Navigation Satellite Systems (GNSSs/RNSSs) will enhance a wide range of positioning applications. The systems are the American Global Positioning System (GPS) , Russian GLObal’ naya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) , Chinese BeiDou Navigation Satellite System (BDS) , European Galileo , Japanese Quasi-Zenith Satellite System (QZSS), and the Indian Regional Navigation Satellite System (IRNSS) .

The GNSS signals can be tracked by a receiver r with code and phase observables. For geodetic receivers, the code observables have precision at the decimeter-level, whereas the phase observables have millimeter-level precision. The general (linearized) system of observation equations for an arbitrary GNSS * can be expressed as follows,
$$ \begin{array}{l}\Delta\;{\phi}_{r,j}^{s_{\star...


Global Position System Ambiguity Resolution Code Division Multiple Access International GNSS Service Zenith Tropospheric Delay 
This is a preview of subscription content, log in to check access

References and Reading

  1. Baarda, W. 1973. S-transformations and criterion matrices. Netherlands Geodetic Commission Publications on Geodesy, New Series, 5(1), 168, http://www.ncgeo.nl/phocadownload/18Baarda.pdf.
  2. Banville, S., Collins, P., and Lahaye, F., 2013. GLONASS ambiguity resolution of mixed receiver types without external calibration. GPS Solutions, 17(3), 275–282, doi:10.1007/s10291-013-0319-7.CrossRefGoogle Scholar
  3. Chen, H., Huang, Y., Chiang, K., Yang, M., and Rau, R., 2009. The performance comparison between GPS and BeiDou-2/COMPASS: a perspective from Asia. Journal of the Chinese Institute of Engineers, 32(5), 679–689.CrossRefGoogle Scholar
  4. Collins, P., Lahaye, F., Hroux, P., Bisnath, S. 2008. Precise point positioning with ambiguity resolution using the decoupled clock model. In Proceedings of ION GNSS, GA.Google Scholar
  5. CSNO. 2013. BeiDou navigation satellite system signal in space interface control document: open service signal, version 2.0, China satellite navigation office. Tech. rep., 82 pages.Google Scholar
  6. Deng, C., Tang, W., Liu, J., and Shi, C., 2014. Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions, 18(3), 375–386, doi:10.1007/s10291-013-0337-5.CrossRefGoogle Scholar
  7. Dow, J. M., Neilan, R. E., and Rizos, C., 2009. The international GNSS service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83(3), 191–198.CrossRefGoogle Scholar
  8. GalileoICD. 2014. European GNSS (Galileo) Open Service, Signal in Space Interface Control Document, European Union. Tech. rep., 64 pages.Google Scholar
  9. Ge, M., Gendt, G., Rothacher, M., Shi, C., and Liu, J., 2008. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389–399, doi:10.1007/s00190-007-0187-4.CrossRefGoogle Scholar
  10. GLONASSICD. 2008. Global Navigation Satellite System GLONASS, Interface Control Document, Navigational Radiosignal in bands L1, L2, Edition 5.1. Tech. rep., 65 pages.Google Scholar
  11. He, H., Li, J., Yang, Y., Xu, J., Guo, H., and Wang, A., 2014. Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solutions, 18(3), 393–403, doi:10.1007/s10291-013-0339-3.CrossRefGoogle Scholar
  12. Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. (eds.) 2008. GNSS: Global Navigation Satellite Systems. GPS, GLONASS, Galileo & more. Wien/New York: Springer-Verlag. ISBN 978-3-211-73012-6.Google Scholar
  13. ISRO. 2014. Indian Regional Navigation Satellite System Signal in Space ICD for Standard Positioning Service, V1.0. Tech. rep., 70 pages.Google Scholar
  14. JAXA. 2014. Japan Aerospace Exploration Agency (JAXA), Quasi-Zenith Satellite System Navigation Service – Interface Specification for QZSS (IS-QZSS), V1.6. Tech. rep., 248 pages.Google Scholar
  15. Jiang, Y., Yang, S., Zhang, G., and Li, G., 2011. Coverage performance analysis on combined-GEO-IGSO satellite constellation. Journal of Electronics, 28(2), 228–234.Google Scholar
  16. Jin, S., Jin, R., and Li, D., 2016. Assessment of BeiDou differential code bias variations from multi-GNSS network observations. Annals of Geophysics, 34, 259–269.CrossRefGoogle Scholar
  17. Li, P., and Zhang, X., 2014. Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solutions, 18(3), 461–471.CrossRefGoogle Scholar
  18. Li, X., Zhang, X., Ren, X., Fritche, M., Wickert, J., Schuh, H. 2015. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Scientific Reports, 5, Article number 8328, doi:10.1038/srep08328.Google Scholar
  19. Montenbruck, O., Hauschild, A., Steigenberger, P., Hugentobler, U., Teunissen, P. J. G., and Nakamura, S., 2013. Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solutions, 17(2), 211–222, doi:10.1007/s10291-012-0272-x.CrossRefGoogle Scholar
  20. Montenbruck, O., Hauschild, A., and Steigenberger, P., 2014. Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation Journal of the Institute of Navigation, 61(3), 191–201.Google Scholar
  21. Nadarajah, N., Teunissen, P. J. G., and Raziq, N., 2013. BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination. Sensors, 13(7), 9435–9463.CrossRefGoogle Scholar
  22. Nadarajah, N., Teunissen, P. J. G., Sleewaegen, J. M., and Montenbruck, O., 2015. The mixed-receiver BeiDou inter-satellite-type bias and its impact on RTK positioning. GPS Solutions, 19(3), 357–368, doi:10.1007/s10291-014-0392-6.CrossRefGoogle Scholar
  23. Odijk, D., and Teunissen, P. J. G., 2013. Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solutions, 17(4), 521–533.CrossRefGoogle Scholar
  24. Odijk, D., Zhang, B., Khodabandeh, A., Odolinski, R., and Teunissen, P. J. G., 2015. On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. Journal of Geodesy, doi:10.1007/s00190-015-0854-9.Google Scholar
  25. Odolinski, R., and Teunissen, P. J. G., 2016. Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis. Journal of Geodesy, doi:10.1007/s00190-016-0921-x.Google Scholar
  26. Odolinski, R., Teunissen, P. J. G., and Odijk, D., 2014. Combined GPS + BDS + Galileo + QZSS for Long Baseline RTK Positioning. Tampa, FL: ION GNSS.Google Scholar
  27. Odolinski, R., Teunissen, P. J. G., and Odijk, D., 2015a. Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solutions, 19(1), 151–163, doi:10.1007/s10291-014-0376-6.CrossRefGoogle Scholar
  28. Odolinski, R., Teunissen, P. J. G., and Odijk, D., 2015b. Combined GPS + BDS for short to long baseline RTK positioning. Measurement Science and Technology, 26, 045801, doi:10.1088/0957-0233/26/4/045801.CrossRefGoogle Scholar
  29. Paziewski, J., and Wielgosz, P., 2015. Accounting for Galileo-GPS inter-system biases in precise satellite positioning. Journal of Geodesy, 89(1), 81–93, doi:10.1007/s00190-014-0763-3.CrossRefGoogle Scholar
  30. Paziewski, J., Sieradzki, R., and Wielgosz, P., 2015. Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing. Measurement Science and Technology, 26(9), 095008, doi:10.1088/0957-0233/26/9/09500.CrossRefGoogle Scholar
  31. Shi, C., Zhao, Q., Hu, Z., and Liu, J., 2013. Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solutions, 17(1), 103–119, doi:10.1007/s10291-012-0264-x.CrossRefGoogle Scholar
  32. Teunissen, P. J. G., 1985. Generalized inverses, adjustment, the datum problem and S-transformations. In Sanso, F., and Grafarend, E. W. (eds.), Optimization of geodetic networks. Berlin/Heidelberg/New York/Tokyo: Springer, pp. 11–55.CrossRefGoogle Scholar
  33. Teunissen, P. J. G., 1995. The least squares ambiguity decorrelation adjustment: a method for fast GPS integer estimation. Journal of Geodesy, 70, 65–82.CrossRefGoogle Scholar
  34. Teunissen, P. J. G., 1998. Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of Geodesy, 72, 606–612.CrossRefGoogle Scholar
  35. Teunissen, P. J. G., and Khodabandeh, A., 2015. Review and principles of PPP-RTK methods. Journal of Geodesy, 89(3), 217–240.CrossRefGoogle Scholar
  36. Teunissen, P. J. G., and Kleusberg, A. (eds.), 1998. GPS for Geodesy. Second Completely Revised and Extended Edition. Berlin: Springer-Verlag.Google Scholar
  37. Teunissen, P. J. G., Odolinski, R., and Odijk, D., 2014. Instantaneous BeiDou + GPS RTK positioning with high cut-off elevation angles. Journal of Geodesy, 88(4), 335–350.CrossRefGoogle Scholar
  38. Wanninger, L., 2012. Carrier-phase inter-frequency biases of GLONASS receivers. Journal of Geodesy, 86, 139–148, doi:10.1007/s00190-011-0502-y.CrossRefGoogle Scholar
  39. Yang, Y., Li, J., Xu, J., Tang, J., Guo, H., and He, H., 2011. Contribution of the Compass satellite navigation system to global PNT users. Chinese Science Bulletin, 56(26), 2813–2819.CrossRefGoogle Scholar
  40. Zaminpardaz, S., Teunissen, P. J. G., and Nadarajah, N., 2016. GLONASS CDMA L3 ambiguity resolution and positioning. GPS Solutions, doi:10.1007/s10291-016-0544-y.Google Scholar
  41. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(3), 5005–5017.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.National School of SurveyingUniversity of OtagoDunedinNew Zealand
  2. 2.GNSS Research CentreCurtin University of TechnologyPerthAustralia