Encyclopedia of Geodesy

Living Edition
| Editors: Erik Grafarend

Isostasy – Geodesy

  • Lars E. SjöbergEmail author
  • Mohammad Bagherbandi
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-02370-0_111-1

Definition

Isostasy (Greek isos “equal,” stasis “stand still”) is a term in geology, geophysics, and geodesy to describe the state of mass balance (equilibrium) between the Earth’s crust and upper mantle. It describes a condition to which the mantle tends to balance the mass of the crust in the absence of external forces.

Introduction

The term isostasy was proposed in 1889 by the American geologist C. Dutton, but the first idea of mass balancing of the Earth’s upper layer goes back to Leonardo da Vinci (1452–1519). The term means that the Earth’s topographic mass is balanced (mass conservation) in one way or another, so that at a certain depth the pressure is hydrostatic. Isostasyis an alternative view of Archimedes’ principle of hydrostatic equilibrium . According to this principle, a floating body displaces its own weight. A light mountain chain can be compared with an iceberg or a cork floating in water or in proper term floating on the denser underlying mantle. When a certain...

This is a preview of subscription content, log in to check access.

References and Reading

  1. Airy, G. B., 1855. On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philosophical Transactions of the Royal Society of London, Series B, 145, 101–104.CrossRefGoogle Scholar
  2. Bagherbandi, M., and Sjöberg, L. E., 2012a. A synthetic Earth gravity model based on a topographic-isostatic model. Journal of Studia Geophysica and Geodetica, 56(2012). doi:10.1007/s11200-011-9045-1.Google Scholar
  3. Bagherbandi, M., and Sjöberg, L. E., 2012b. Non-isostatic effects on crustal thickness: a study using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors, 200–201, 37–44, doi:10.1016/j.pepi.2012.04.001.CrossRefGoogle Scholar
  4. Bagherbandi, M., and Sjöberg, L. E., 2013. Improving gravimetric-isostatic models of crustal depth by correcting for non-isostatic effects and using CRUST 2.0. Earth Science Review, 117, 29–39, doi:10.1016/j.earscirev.2012.12.002.CrossRefGoogle Scholar
  5. Bagherbandi M., Sjöberg L. E., Tenzer R., and Abrehdary, M., 2015. A new Fennoscandian crustal thickness model based on CRUST1.0 and gravimetric isostatic approach. Earth Science Review, 145, 132–145, doi:10.1016/j.earscirev.2015.03.003.Google Scholar
  6. Barrel, J., 1914. The strength of the Earth’s crust I. Geologic tests of the limits of strength. Journal of Geology, 22, 28–48.CrossRefGoogle Scholar
  7. Casenave, A., 1994. The geoid and oceanic lithosphere. In Vanicek, P., and Christou, N. T. (eds.), Geoid and its Geophysical Interpretation. Boca Raton: CRC Press, p. 13.Google Scholar
  8. Ebbing, J., 2007. Isostatic density modelling explains the missing root of the Scandes. Norwegian Journal of Geology, 87, 13–20.Google Scholar
  9. Gilbert, G. K., 1889. The strength of the Earth’s crust. Bulletin of the Geological Society of America, 1, 23–27.Google Scholar
  10. Haagmans, R., 2000. A synthetic earth for use in geodesy. Journal of Geodesy, 74, 503–511.CrossRefGoogle Scholar
  11. Hayford, J. F., 1909. The Figure of the Earth and Isostasy from Measurements in the United States. Washington, D.C.: GPO.Google Scholar
  12. Heiskanen, W. A., 1924. Untersuchungen ueber Schwerkraft und Isostasie. Finn. Geod. Inst. Publ. No. 4, Helsinki.Google Scholar
  13. Heiskanen, W. A., 1938. New isostatic tables for the reduction of the gravity values calculated on the basis of Airy’s hypothesis. Isostat. Inst. of IAG Publ. No. 2. Finnish Geodetic Institution, Helsinki.Google Scholar
  14. Heiskanen, W. A., and Moritz, H., 1967. Physical Geodesy. New York: W.H. Freeman.Google Scholar
  15. Heiskanen, W. A., and Vening Meinesz, F. A., 1958. The Earth and its Gravity Field. New York: McGraw-Hill.Google Scholar
  16. Kaban, M. K., Schwintzer, P., and Tikhotsky, S. A., 1999. A global isostatic gravity model of the Earth. Geophysical Journal International, 136, 519–536.CrossRefGoogle Scholar
  17. Martinec, Z., 1998. Boundary-Value Problems for Gravimetric Determination of a Precise Geoid. Berlin/Heidelberg/New York: Springer. Lecture Notes in Earth Sciences, Vol. 73.Google Scholar
  18. Mckenzie, D. P., 1967. Some remarks on heat flow and gravity anomalies. Journal of Geophysical Research, 72, 61–71.CrossRefGoogle Scholar
  19. Moritz, H., 1990. The Figure of the Earth. Karlsruhe: H Wichmann.Google Scholar
  20. Pratt, J. H., 1855. On the attraction of the Himalaya mountains, and on the elevated regions beyond; upon the plumb line in India. Philosophical Transactions of the Royal Society of London, 145, 53–100.CrossRefGoogle Scholar
  21. Pratt, J. H., 1859. On the deflection of the plumb-line in India, caused by the attraction of the Himalaya Mountains and of the elevated regions beyond, and its modification by the compensating effect of a deficiency of matter below the mountain mass. Philosophical Transactions of the Royal Society of London, 149, 745–778.CrossRefGoogle Scholar
  22. Sjöberg, L. E., 2009. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophysical Journal International, 179(3), 1527–1536, doi:10.1111/j.1365-246X.2009.04397.x.CrossRefGoogle Scholar
  23. Sjöberg, L. E., 2013. On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz inverse problem of isostasy. Geophysical Journal International, 193, 1277–128.CrossRefGoogle Scholar
  24. Tenzer, R., and Bagherbandi, M., 2012. Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. International Journal of Geosciences, 3, 918–929, doi:10.4236/ijg.2012.325094.CrossRefGoogle Scholar
  25. Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjöberg, L. E., Novák, P., and Jin, S., 2015. Analysis of the refined CRUST1.0 crustal model and its gravity field. Surveys in Geophysics, 36, 139–165.CrossRefGoogle Scholar
  26. Vening Meinesz, F. A., 1931. Une nouvelle méthodepour la réduction isostatique régionale de l’intensité de la pesanteur. Bulletin Géodésique, 29, 33–51.CrossRefGoogle Scholar
  27. Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge, UK: Cambridge University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Division of Geodesy and Satellite PositioningRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of Industrial Development, IT and Land ManagementUniversity of GävleGävleSweden