Encyclopedia of Inflammatory Diseases

Living Edition
| Editors: Michael J. Parnham

Interleukin 2

  • Natalia Arenas-RamirezEmail author
  • Onur Boyman
Living reference work entry
DOI: https://doi.org/10.1007/978-3-0348-0620-6_132-1



In 1976, Gallo and colleagues showed that supernatants of activated T cells contained a factor that induced the proliferation of antigen-activated T cells in vitro (Morgan et al. 1976). This mitogen, then called T-cell growth factor, was subsequently purified, cloned, and named interleukin 2 (IL-2).

IL-2 is a 15-kDa four-α-helix-bundle cytokine that contains a single disulfide bond, which is essential for its biological activity (Malek 2008). IL-2 plays an important role in immune homeostasis and activation as well as in immunity (Boyman and Sprent 2012). It is a member of a cytokine family that includes IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which all bind to the common gamma chain (γc) cytokine receptor...


Natural Killer Cell TReg Cell Chronic GVHD Vascular Leak Syndrome Common Gamma Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



We thank the members of the Boyman laboratory for the critical reading of this article. This work was funded by SNF grants PP00P3-128421 and CRSII3-136203, a National Psoriasis Foundation USA grant, a Zurich Integrative Human Physiology (ZIHP) cooperative project grant, a grant of the Stiftung fuer wissenschaftliche Forschung of the University of Zurich, and a grant of the Novartis Foundation (all to OB).


  1. Aoki, C. A., Roifman, C. M., Lian, Z. X., Bowlus, C. L., Norman, G. L., Shoenfeld, Y., Mackay, I. R., & Gershwin, M. E. (2006). IL-2 receptor alpha deficiency and features of primary biliary cirrhosis. Journal of Autoimmunity, 27, 50–53.CrossRefPubMedGoogle Scholar
  2. Boyman, O., & Sprent, J. (2012). The role of interleukin-2 during homeostasis and activation of the immune system. Nature Reviews Immunology, 12, 180–190.PubMedGoogle Scholar
  3. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D., & Sprent, J. (2006a). Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science, 311, 1924–1927.CrossRefPubMedGoogle Scholar
  4. Boyman, O., Surh, C. D., & Sprent, J. (2006b). Potential use of IL-2/anti-IL-2 antibody immune complexes for the treatment of cancer and autoimmune disease. Expert Opinion on Biological Therapy, 6, 1323–1331.CrossRefPubMedGoogle Scholar
  5. Caudy, A. A., Reddy, S. T., Chatila, T., Atkinson, J. P., & Verbsky, J. W. (2007). CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. The Journal of Allergy and Clinical Immunology, 119, 482–487.CrossRefPubMedGoogle Scholar
  6. Gregersen, P. K., & Olsson, L. M. (2009). Recent advances in the genetics of autoimmune disease. Annual Review of Immunology, 27, 363–391.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Gutbrodt, K. L., Schliemann, C., Giovannoni, L., Frey, K., Pabst, T., Klapper, W., Berdel, W. E., & Neri, D. (2013). Antibody-based delivery of interleukin-2 to neovasculature has potent activity against acute myeloid leukemia. Science Translational Medicine, 5, 201ra118.CrossRefPubMedGoogle Scholar
  8. Koreth, J., Matsuoka, K., Kim, H. T., McDonough, S. M., Bindra, B., Alyea, E. P., 3rd, Armand, P., Cutler, C., Ho, V. T., Treister, N. S., Bienfang, D. C., Prasad, S., Tzachanis, D., Joyce, R. M., Avigan, D. E., Antin, J. H., Ritz, J., & Soiffer, R. J. (2011). Interleukin-2 and regulatory T cells in graft-versus-host disease. New England Journal of Medicine, 365, 2055–2066.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Krieg, C., Letourneau, S., Pantaleo, G., & Boyman, O. (2010). Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 11906–11911.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Lenardo, M. J. (1991). Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature, 353, 858–861.CrossRefPubMedGoogle Scholar
  11. Letourneau, S., Krieg, C., Pantaleo, G., & Boyman, O. (2009). IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. Journal of Allergy and Clinical Immunology, 123, 758–762.CrossRefPubMedGoogle Scholar
  12. Liao, W., Lin, J. X., & Leonard, W. J. (2013). Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity, 38, 13–25.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Long, S. A., Rieck, M., Sanda, S., Bollyky, J. B., Samuels, P. L., Goland, R., Ahmann, A., Rabinovitch, A., Aggarwal, S., Phippard, D., Turka, L. A., Ehlers, M. R., Bianchine, P. J., Boyle, K. D., Adah, S. A., Bluestone, J. A., Buckner, J. H., & Greenbaum, C. J. (2012). Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes, 61, 2340–2348.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Malek, T. R. (2008). The biology of interleukin-2. Annual Review of Immunology, 26, 453–479.CrossRefPubMedGoogle Scholar
  15. Malek, T. R., & Castro, I. (2010). Interleukin-2 receptor signaling: At the interface between tolerance and immunity. Immunity, 33, 153–165.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Morgan, D. A., Ruscetti, F. W., & Gallo, R. (1976). Selective in vitro growth of T lymphocytes from normal human bone marrows. Science, 193, 1007–1008.CrossRefPubMedGoogle Scholar
  17. Pahwa, R., Chatila, T., Pahwa, S., Paradise, C., Day, N. K., Geha, R., Schwartz, S. A., Slade, H., Oyaizu, N., & Good, R. A. (1989). Recombinant interleukin 2 therapy in severe combined immunodeficiency disease. Proceedings of the National Academy of Sciences of the United States of America, 86, 5069–5073.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Rao, A., Luo, C., & Hogan, P. G. (1997). Transcription factors of the NFAT family: Regulation and function. Annual Review of Immunology, 15, 707–747.CrossRefPubMedGoogle Scholar
  19. Rosenberg, S. A. (2012). Raising the bar: The curative potential of human cancer immunotherapy. Science Translational Medicine, 4, 127ps128.CrossRefGoogle Scholar
  20. Saadoun, D., Rosenzwajg, M., Joly, F., Six, A., Carrat, F., Thibault, V., Sene, D., Cacoub, P., & Klatzmann, D. (2011). Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. New England Journal of Medicine, 365, 2067–2077.CrossRefPubMedGoogle Scholar
  21. Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A. C., & Horak, I. (1993). Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell, 75, 253–261.CrossRefPubMedGoogle Scholar
  22. Setoguchi, R., Hori, S., Takahashi, T., & Sakaguchi, S. (2005). Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. The Journal of Experimental Medicine, 201, 723–735.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Sharfe, N., Dadi, H. K., Shahar, M., & Roifman, C. M. (1997). Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proceedings of the National Academy of Sciences of the United States of America, 94, 3168–3171.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Smith, K. A. (1988). Interleukin-2: Inception, impact, and implications. Science, 240, 1169–1176.CrossRefPubMedGoogle Scholar
  25. Smith, F. O., Downey, S. G., Klapper, J. A., Yang, J. C., Sherry, R. M., Royal, R. E., Kammula, U. S., Hughes, M. S., Restifo, N. P., Levy, C. L., White, D. E., Steinberg, S. M., & Rosenberg, S. A. (2008). Treatment of metastatic melanoma using interleukin-2 alone or in conjunction with vaccines. Clinical Cancer Research, 14, 5610–5618.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Tang, Q., Adams, J. Y., Penaranda, C., Melli, K., Piaggio, E., Sgouroudis, E., Piccirillo, C. A., Salomon, B. L., & Bluestone, J. A. (2008). Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity, 28, 687–697.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Taniguchi, T., & Minami, Y. (1993). The IL-2/IL-2 receptor system: A current overview. Cell, 73, 5–8.CrossRefPubMedGoogle Scholar
  28. Weinberg, K., & Parkman, R. (1990). Severe combined immunodeficiency due to a specific defect in the production of interleukin-2. New England Journal of Medicine, 322, 1718–1723.CrossRefPubMedGoogle Scholar
  29. Williams, M. A., & Bevan, M. J. (2007). Effector and memory CTL differentiation. Annual Review of Immunology, 25, 171–192.CrossRefPubMedGoogle Scholar
  30. Wuest, S. C., Edwan, J. H., Martin, J. F., Han, S., Perry, J. S., Cartagena, C. M., Matsuura, E., Maric, D., Waldmann, T. A., & Bielekova, B. (2011). A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nature Medicine, 17, 604–609.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Allergy Unit, Department of DermatologyUniversity Hospital ZurichZurichSwitzerland