Advertisement

Bioactive Compounds of Rhubarb (Rheum Species)

Reference work entry
  • 508 Downloads
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Rhubarb (Rheum rhabarbarum L.; family, Polygonaceae) is a perennial herbaceous plant widely sought for their rich nutraceutical values. Several cultivated and wild species of rhubarb commands high demand in international market. Leaves are toxic, while stalk or the petioles are edible as food. Dried root/rhizome command usage in traditional medicine and is scientifically proven to impart a wide array of health benefits. Rhubarb’s therapeutic value is accredited to the presence of bioactive compounds such as anthraquinones, hydroxyanthraquinone, aloe-emodin, emodin, rhein, stilbene, rhaponticin, dietary fiber, and much more. These bioactive compounds are established for exhibiting antioxidant, anticancer, antimicrobial, antidiarrheal, antidiabetic, anti-inflammatory, diuretic, hepatoprotective activities, and much more. Even though several published works are available on rhubarb, in majority of the instances, information remains scattered, especially for the sub-cultivars, and for the actual mechanism of action imparted by the bioactive compounds. In this chapter, some of the interesting research themes published on rhubarb’s use, food and therapeutic values, composition (nutritional and bioactive compounds), and proved bioactivity are presented.

Keywords

Bioactive compounds Bioactivity Rhubarb Traditional use Therapeutic values 

Notes

Acknowledgments

This chapter theme is based on the ongoing project-VALORTECH, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810630.

References

  1. 1.
    Wright CA (2001) Mediterranean vegetables: a cook’s ABC of vegetables and their preparation. The Harvard Common Press, Boston, pp 1–173Google Scholar
  2. 2.
    Lloyd JU (1921) Origin and history of all the pharmacopeial vegetable drugs, chemicals and preparations with bibliography. Caxton Press, Caldwell, pp 1–492, ISBN-10: 1408689901Google Scholar
  3. 3.
    Foust CM (1985) That elusive rhubarb: some botanical and horticultural aspects before the twentieth century. J Natl Assoc 10(1–4):7–21Google Scholar
  4. 4.
    Foust CM, Marshall DE (1991) Culinary rhubarb production in North America: history and recent statistics. HortSci 26(11):1360–1363CrossRefGoogle Scholar
  5. 5.
    Kalisz S, Oszmiański J, Kolniak-Ostek J, Grobelna A et al (2020) Effect of a variety of polyphenols compounds and antioxidant properties of rhubarb (Rheum rhabarbarum). LWT- Food Sci Technol 118:108775.  https://doi.org/10.1016/j.lwt.2019.108775CrossRefGoogle Scholar
  6. 6.
    Peigen X, Liyi H, Liwei W (1984) Ethnopharmacologic study of Chinese rhubarb. J Ethnopharmacol 10:275–293PubMedCrossRefGoogle Scholar
  7. 7.
    Wojcikowski K, Johnson DW, Gobe G (2004) Medicinal herbal extracts - renal friend or foe: part two: herbal extracts with potential renal benefits. Nephrol 9:400–405CrossRefGoogle Scholar
  8. 8.
    Harima S, Matsuda H, Kuo M (1994) Study of various rhubarbs regarding the cathartic effect and endotoxin-induced disseminated intravascular coagulation. Biol Pharm Bull 17:1522–1525PubMedCrossRefGoogle Scholar
  9. 9.
    Cao YJ, Pu ZJ, Tang YP, Shen J, Chen YY, Kang A, Zhou GS, Duan JA (2017) Advances in bio-active constituents, pharmacology and clinical applications of rhubarb. Chin Med 12(36):1–12.  https://doi.org/10.1186/s13020-017-0158-5CrossRefGoogle Scholar
  10. 10.
    Agarwal SK, Singh SS, Lakshmi V, Verma S, Kumar S (2001) Chemistry and pharmacology of rhubarb (Rheum species) – a review. J Sci Ind Res 60:1–9Google Scholar
  11. 11.
    Evans LW, Bender A, Burnett L, Godoy L, Shen Y et al (2020) Emodin and emodin-rich rhubarb inhibits histone deacetylase (HDAC) activity and cardiac myocyte hypertrophy. J Nutr Biochem 79:108339.  https://doi.org/10.1016/j.jnutbio.2019.108339PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gao L, Xu X, Yang J (2013) Chemical constituents of the roots of Rheum officinale. Chem Nat Compd 49(4):603–605CrossRefGoogle Scholar
  13. 13.
    Liu R, Li A, Sun A (2004) Preparative isolation and purification of hydroxyanthraquinones and cinnamic acid from the Chinese medicinal herb Rheum officinale Baill. By high-speed counter-current chromatography. J Chromatogr A 1052:217–221PubMedCrossRefGoogle Scholar
  14. 14.
    Rashmi HB, Negi PS (2020) Phenolic acids from vegetables: a review on processing stability and health benefits. Food Res Int 136:109298.  https://doi.org/10.1016/j.foodres.2020.109298CrossRefPubMedGoogle Scholar
  15. 15.
    Shang XF, Zhaoa ZM, Li JC (2019) Insecticidal and antifungal activities of Rheum palmatum L. anthraquinones and structurally related compounds. Ind Crop Prod 137:508–520CrossRefGoogle Scholar
  16. 16.
    Kashiwada Y, Nonaka GI, Nishioka I (1986a) Tannins and related compounds. (XLV.1) rhubarb. (5). Isolation and characterization of flavan-3-ol and procyanidin glucosides. Chem Pharm Bull 34(8):3208–3222CrossRefGoogle Scholar
  17. 17.
    Kashiwada Y, Nonaka GI, Nishioka I (1986b) Tannins and related compounds. (XLVIII.1) rhubarb. Isolation and characterization of new dimeric and trimeric procyanidins. Chem Pharm Bull 34(10):4083–4091CrossRefGoogle Scholar
  18. 18.
    Komatsu K, Nagayama Y, Tananka K, Ling Y, Basnet P, Ragab M (2006) Development of a high performance liquid chromatographic method for systematic quantitative analysis of chemical constituents in rhubarb. Chem Pharm Bull 54(7):941–947CrossRefGoogle Scholar
  19. 19.
    Wang AQ, Li JL, Wu ZZ (2003) Studies on non-stilbenes in Rheum franzenbachii. Chin Tradit Herb Drug 34(8):685–687Google Scholar
  20. 20.
    Xu Q, Qing YJ, Su XJ, Luo JW (2009) Chemical constituents in Rheum palmatum. Chin Tradit Herb Drug 40(4):533–536Google Scholar
  21. 21.
    Wang XF, Zheng JH, Chen QY (1995) GC/MS in the study of chemical constituents of volatile oil from Rheum tanguticum. China J Chin Mater Med 30(12):719–720Google Scholar
  22. 22.
    Xie Y, Li GW, Ma YM (2010) Research progress in rhubarb polysaccharides. Chin J New Drug 19(9):755–758Google Scholar
  23. 23.
    Oszmiański J, Wojdyło A (2008) Polyphenol content and antioxidative activity in apple purées with rhubarb juice supplement. Int J Food Sci Technol 43(3):501–509CrossRefGoogle Scholar
  24. 24.
    Duma M, Alsina I, Dubova L (2016) Changes of chemical composition of rhubarb during vegetation. Acta Hortic 1142:253–260CrossRefGoogle Scholar
  25. 25.
    Ding X, Yin B, Qian L, Zeng Z, Yang Z, Li H et al (2011) Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J Med Microbiol 60:1827–1834PubMedCrossRefGoogle Scholar
  26. 26.
    Kon R, Ikarashi N, Nagoya C, Takayama T, Kusunoki Y et al (2014) Rheinanthrone, a metabolite of sennoside A, triggers macrophage activation to decrease aquaporin-3 expression in the colon, causing the laxative effect of rhubarb extract. J Ethnopharmacol 152:190–200PubMedCrossRefGoogle Scholar
  27. 27.
    Keser S, Keser F, Karatepe M, Kaygili O, Tekin S et al. (2019) Bioactive contents, in vitro antiradical, antimicrobial and cytotoxic properties of rhubarb (Rheum ribes L.) extracts. Nat Prod Res:1–5.  https://doi.org/10.1080/14786419.2018.1560294
  28. 28.
    Li WY, Chan SW, Guo DJ, Chung MK, Leung TY, Yu PHF (2009) Water extract of Rheum officinale Baill induces apoptosis in human lung adenocarcinoma A549 and human breast cancer MCF-7 cell lines. J Ethnopharmacol 24:251–256CrossRefGoogle Scholar
  29. 29.
    Moon MK, Kang DG, Lee JK, Kim JS, Lee HS (2006) Vasodilatory and anti-inflammatory effects of the aqueous extract of rhubarb via a NO-cGMP pathway. Life Sci 78:1550–1557PubMedCrossRefGoogle Scholar
  30. 30.
    Zhao YL, Wang JB, De Zhou G, Shan LM, Xiao XH (2009) Investigations of free anthraquinones from rhubarb against α-naphthylisothiocyanate-induced chelestatic liver injury in rats. Basic Clin Pharmacol Toxicol 104:463–469PubMedCrossRefGoogle Scholar
  31. 31.
    Chen DC, Ma LQ, Liu SZ (2009) Effect of rhubarbs on intestinal flora and bacterial translocation in rats with sepsis. Chin Critical Care Med 21(1):17–20Google Scholar
  32. 32.
    Liu B, Xie J, Ge X, Xu P, Wang A et al (2010) Effects of anthraquinone extract from Rheum officinale Bail on the growth performance and physiological responses of Macrobrachium rosenbergii under high temperature stress. Fish Shellfish Immunol 29(1):49–57PubMedCrossRefGoogle Scholar
  33. 33.
    Liu B, Ge X, Xie J, Xu P, He Y et al (2012) Effects of anthraquinone extract from Rheum officinale Bail on the physiological responses and HSP70 gene expression of Megalobramaamblycephala under Aeromonashydrophila infection. Fish Shellfish Immunol 32(1):1–7PubMedCrossRefGoogle Scholar
  34. 34.
    Xie J, Liu B, Zhou Q, Su Y, He Y et al (2008) Effects of anthraquinone extract from rhubarb Rheum officinale Bail on the crowding stress response and growth of common carp Cyprinus carpiovar. Jian Aquacult 281(1):5–11CrossRefGoogle Scholar
  35. 35.
    Kuo IP, Lee PT, Nan FH (2020) Rheum officinale extract promotes the innate immunity of orange-spotted grouper (Epinepheluscoioides) and exerts strong bactericidal activity against six aquatic pathogens. Fish and Shellfish Immunol 102:117–124CrossRefGoogle Scholar
  36. 36.
    Lai F, Zhang Y, Xie DP, Mai ST, Weng YN et al (2015) A systematic review of rhubarb (a traditional Chinese medicine) used for the treatment of experimental sepsis. Evid Based Complement Altern Med:1–12Google Scholar
  37. 37.
    Krenn L, Presser A, Pradhan R, Bahr B, Paper DH et al (2003) Sulfemodin 8-O-b-D-glucoside, a new sulfated anthraquinone glycoside, and antioxidant phenolic compounds from Rheum emodi. J Nat Prod 66:1107–1109PubMedCrossRefGoogle Scholar
  38. 38.
    Rajkumar V, Guha G, Kumar RA (2011) Antioxidant and anti-cancer potentials of Rheumemodi rhizome extracts. Evid BasedComplementary Altern Med 697986:1–9.  https://doi.org/10.1093/ecam/neq048CrossRefGoogle Scholar
  39. 39.
    Tsai FJ, Tsai HJ, Huang CY (2013) Rhubarb inhibits hepatocellular carcinoma cell metastasis via GSK-3-β activation to enhance protein degradation and attenuate nuclear translocation of β-catenin. Food Chem 138:278–285PubMedCrossRefGoogle Scholar
  40. 40.
    Wu W, Hu N, Zhang Q, Li Y, Li P et al (2014) In vitroglucuronidation of five rhubarb anthraquinones by intestinal and liver microsomes from humans and rats. Chem Biol Interact 219:18–27PubMedCrossRefGoogle Scholar
  41. 41.
    Li RZ, Ying WX, Zhu CW (2007) Therapeutical effects of rhein on non-alcoholic steatohepatitis in rats. Chin J Pharmacol Ther 12(8):923–926Google Scholar
  42. 42.
    Wang YH, Zhao HP, Wang JB, Zhao YL, Xiao XH (2014) Study on dosage toxicity/efficacy relationship of prepared rhubarb on basis of symptom based prescription theory. Zhongguo Zhong Yao Za Zhi 39:2918–2923PubMedGoogle Scholar
  43. 43.
    Lin YL, Wu CF, Huang YT (2009) Effects of rhubarb on migration of rat hepatic stellate cells. J Gastroenterol Hepatol (Australia) 24:453–461CrossRefGoogle Scholar
  44. 44.
    Ibrahim M, Khaja MN, Aara A, Khan AA, Habeeb MA et al (2008) Hepatoprotective activity of Sapindusmukorossi and Rheum emodi extracts: in vitro and in vivo studies. World J Gastroenterol 14:2566–2571PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chang CY, Chan HL, Lin HY et al (2012) Rhein induces apoptosis in human breast cancer cells. Evid Based Complement Alternat Med 952504.  https://doi.org/10.1155/2012/952504
  46. 46.
    Huang PH, Huang CY, Chen MC et al (2013) Emodin and aloe-emodin suppress breast cancer cell proliferation through ER α inhibition. Evid Based Complement Alternat Med 2013:376123.  https://doi.org/10.1155/2013/376123CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tu Y, Wu Z, Tan B, Yang A, Fang Z (2019) Emodin: its role in prostate cancer-associated inflammation. Oncol Rep  https://doi.org/10.3892/or.2019.7264.  https://doi.org/10.3892/or.2019.7264
  48. 48.
    Shi P, Huang Z, Chen G (2008) Rhein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma BEL-7402 cells. Am J Chin Med 36(4):805–813PubMedCrossRefGoogle Scholar
  49. 49.
    Srinivas G, Babykutty S, Sathiadevan PP, Srinivas P (2007) Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med Res Rev 27(5):591–608PubMedCrossRefGoogle Scholar
  50. 50.
    Yeh FT, Wu CH, Lee HZ (2003) Signaling pathway for aloe-emodininduced apoptosis in human H460 lung nonsmall carcinoma cell. Int J Cancer 106(1):26–33PubMedCrossRefGoogle Scholar
  51. 51.
    Yu CX, Zhang XQ, Kang LD, Zhang PJ, Chen WW, Liu QW, Zhang JY (2009) Emodin induces apoptosis in human prostate cancer cell LNCaP. Asian J Androl 10(4):625–624CrossRefGoogle Scholar
  52. 52.
    Xiao BX, Guo JM, Liu DH, Zhang S, Liu X (2008) Relationship between antiproliferation effects of aloe-emodin on growth of gastric cancer cells and cell cycle arrest. Chin Tradit Herb Drug 39(5):729–732Google Scholar
  53. 53.
    Zhang LH, Guan Y, Yang ML (2007) Effect of emodin on chemotherapeutic drugs-induced apoptosis in human hepatocellularcaricinoma cells. Acta Med UnivSci Technol Huazhong 36(3):310–313Google Scholar
  54. 54.
    Zhu B, Lin Y, Zhu CF, Zhu XL, Huang CZ, Lu Y, Cheng XX, Wang YJ (2011) Emodin inhibits extracellular matrix synthesis by suppressing p38 and ERK1/2 pathways in TGF-β1-stimulated NRK-49F cells. Mol Med Rep 4(3):505–509PubMedGoogle Scholar
  55. 55.
    Kuo PL, Lin TC, Lin CC (2002) The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Sci 71:1879–1892PubMedCrossRefGoogle Scholar
  56. 56.
    Sheng X, Wang M, Lu M, Xi B, Sheng H, Zang YQ (2011) Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice. Am J Physiol Endocrinol Metab 300(5):E886–E893PubMedCrossRefGoogle Scholar
  57. 57.
    Shia CS, Juang SH, Tsai SY, Chang PH, Kuo S-C et al (2009) Metabolism and pharmacokinetics of anthraquinones in Rheum palmatum in rats and ex vivo antioxidant activity. Planta Med 75:1386–1392PubMedCrossRefGoogle Scholar
  58. 58.
    Liu YF, Yu HM, Zhang C, Yan FF, Liu Y, Zhang Y, Zhang M, Zhao YX (2007) Treatment with rhubarb improves brachial artery endothelial function in patients with atherosclerosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Chin Med 35(4):583–595PubMedCrossRefGoogle Scholar
  59. 59.
    Abe I, Seki T, Noguchi H, Kashiwada Y (2000) Galloyl esters from rhubarb are potent inhibitors of squalene epoxidase, a key enzyme in cholesterol biosynthesis. Planta Med 66(8):753–756PubMedCrossRefGoogle Scholar
  60. 60.
    Yamagishi T, Nishizawa M, Ikura M, Hikichi K, Nonaka GI (1987) New laxative constituents of rhubarb. Isolation and characterization of rheinosides A, B, C and D. Chem Pharm Bull 35(8):3132–3138CrossRefGoogle Scholar
  61. 61.
    Gao Q, Qin WS, Jia ZH, Zheng CH, Li LS, Liu ZH (2010) Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy. Planta Med 76(1):27–33PubMedCrossRefGoogle Scholar
  62. 62.
    Goel V, Ooraikul B, Basu TK (1997) Cholesterol lowering effects of rhubarb stalk fiber in hypercholesterolemic men. J Am Coll Nutr 16(6):600–604PubMedGoogle Scholar
  63. 63.
    Fu X, Xu AG, Yao MY, Guo L, Zhao LS (2014) Emodin enhances cholesterol efflux by activating peroxisome proliferator-activated receptor-γ in oxidized low-density lipoprotein-loaded THP1 macrophages. Clin Exp Pharmacol Physiol 41(9):679–684PubMedGoogle Scholar
  64. 64.
    Hosseini A, Mollazadeh H, Amiri MS, Sadeghnia HR, Ghorbani A (2017) Effects of a standardized extract of Rheum turkestanicum Janischew root on diabetic changes in the kidney, liver and heart of streptozotocin-induced diabetic rats. Biomed Pharmacother 86:605–611PubMedCrossRefGoogle Scholar
  65. 65.
    Wang CC, Huang YJ, Chen -G, Lee LT, Yang LL (2002) Inducible nitric oxide synthase inhibitors of Chinese herbs III. Rheum palmatum. Planta Med 68(10):869–874PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang X-P, Li Z-F, Liu X-G, Wu Y-T, Wang J-X, Wang K-M, Zhou Y-F (2005) Effects of emodin and baicalein on rats with severe acute pancreatitis. World J Gastroenterol 11(14):2095–2100PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ko SK, Lee SM, Whang WK (1999) Anti-platelet aggregation activity of stilbene derivatives from Rheum undulatum. Arch Pharm Res 22(4):401–403PubMedCrossRefGoogle Scholar
  68. 68.
    Park E-K, Choo M-K, Yoon H-K, Kim D-H (2002) Antithrombotic and antiallergic activities of rhaponticin from rhei rhizoma are activated by human intestinal bacteria. Arch Pharm Res 25(4):528–533PubMedCrossRefGoogle Scholar
  69. 69.
    Ngoc TM, Lee SM, Kim YS, Jung YS (2012) Chrysophanol-8-O-glucoside, an anthraquinone derivative in rhubarb, has antiplatelet and anticoagulant activities. J Pharmacol Sci 118(2):245–254Google Scholar
  70. 70.
    Aburjai T (2000) Anti-platelet stilbenes from aerial parts of Rheum palaestinum. Phytochemistry 55(5):407–410PubMedCrossRefGoogle Scholar
  71. 71.
    Adham A, Naqshbandi A (2015) HPLC analysis and antidiabetic effect of Rheum ribes root in type 2 diabetic patients. Zanco J Med Sci 19(2):957–964CrossRefGoogle Scholar
  72. 72.
    Ghorbani A (2017) Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 96:305–312PubMedCrossRefGoogle Scholar
  73. 73.
    Lee MS, Sohn CB (2008) Anti-diabetic properties of chrysophanol and its glucoside from rhubarb rhizome. Biol Pharm Bull 31(11):2154–2157PubMedCrossRefGoogle Scholar
  74. 74.
    Xue J, Ding W, Liu Y (2010) Anti-diabetic effects of emodin involved in the activation of PPARγ on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 81(3):173–177PubMedCrossRefGoogle Scholar
  75. 75.
    Arvindekar A, More T, Payghan PV, Laddha K, Ghoshal N, Arvindekar A (2015) Evaluation of anti-diabetic and alpha glucosidase inhibitory action of anthraquinones from Rheumemodi. Food Funct 6:2693–2700PubMedCrossRefGoogle Scholar
  76. 76.
    Hosseini A, Fanoudi S, Mollazadeh H, Aghaei A, Boroushaki MT (2018a) Protective effect of Rheum turkestanicum against cisplatin by reducing oxidative stress in kidney tissue. J Pharm Bioallied Sci 10(2):66PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hosseini A, Rajabian A, Fanoudi S, Farzadnia M, Boroushaki MT (2018b) Protective effect of Rheum turkestanicum root against mercuric chloride-induced hepatorenal toxicity in rats. Avicenna J Phytomed:1–11Google Scholar
  78. 78.
    Tosun F, Kizilay ÇA (2003) Anthraquinones and flavonoids from Rheum ribes. J Fac Pharm Ankara 32(1):31–35Google Scholar
  79. 79.
    Waly MI, Ali BH, Al-Lawati I, Nemmar A (2013) Protective effects of emodin against cisplatin-induced oxidative stress in cultured human kidney (HEK 293) cells. J Appl Toxicol 33(7):626–630PubMedCrossRefGoogle Scholar
  80. 80.
    Hamid Z, Waza A, Haq E (2018) Rheum emodi ameliorates glutamate toxicity in neuronal cells by up-regulating Nrf2/HO-1 expression. Int J Adv Res Eng 4:788–795Google Scholar
  81. 81.
    Liu T, Jin H, Sun QR, Xu JH, Hu HT (2010) Neuroprotective effects of Emodin in rat cortical neurons against β-amyloid-induced neurotoxicity. Brain Res 1347:149–160Google Scholar
  82. 82.
    Kong LD, Cheng CHK, Tan RX (2004) Inhibition of MAO A and B by some plant derived alkaloids, phenols and anthraquinones. J Ethnopharmacol 91:351–355PubMedCrossRefGoogle Scholar
  83. 83.
    Agarwal SK, Singh SS, Verma S, Kumar S (2000) Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol 72(1–2):43–46PubMedCrossRefGoogle Scholar
  84. 84.
    Cyong J, Matsumoto T, Arakawa K, Kiyohara H, Yamada H, Otsuka Y (1987) Anti-Bacteroides fragalis substance from rhubarb. J Ethnopharmacol 19(3):279–283Google Scholar
  85. 85.
    Ibrahim M, Khaja MN, Aara A, Khan AA, Habeeb MA, Devi YP et al (2006) Antimicrobial activity of Sapindusmukorossiand Rheum emodi extracts: in vitro and in vivo studies. World J Gastroenterol 12:7136–7142PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Liao J, Zhao L, Yoshioka M, Hinode D, Grenier D (2013) Effects of Japanese traditional herbal medicines (Kampo) on growth and virulence properties of Porphyromonas gingivalis and viability of oral epithelial cells. Pharm Biol 51(12):1538–1544PubMedCrossRefGoogle Scholar
  87. 87.
    Alves DS, Perez-Fons L, Estepa A, Micol V (2004) Membrane-related effects underlying the biological activity of the anthraquinonesemodin and barbaloin. Biochem Pharmacol 68:549–561PubMedCrossRefGoogle Scholar
  88. 88.
    Kim JE, Kim HJ, Pandit S, Chang KW, Jeon JG (2011) Inhibitory effect of a bioactivity-guided fraction from Rheum undulatum on the acid production of Streptococcus mutans biofilms at sub-MIC levels. Fitoterapia 82:352–356PubMedCrossRefGoogle Scholar
  89. 89.
    Xiong HR, Luo J, Hou W, Xiao H, Yang ZQ (2011) The effect of emodin, an anthraquinone derivative extracted from the roots of Rheum tanguticum, against herpes simplex virus in vitro and in vivo. J Ethnopharmacol 133(2):718–723PubMedCrossRefGoogle Scholar
  90. 90.
    Li Z, Li LJ, Sun Y, Li J (2007) Identification of natural compounds with anti-hepatitis B virus activity from Rheum palmatum L. ethanol extract. Chemotherapy 53:320–326PubMedCrossRefGoogle Scholar
  91. 91.
    Hou Y, Zhao Y, Wu W, Wu X, Xu J (2015) Antibacterial activities of rhubarb extract and the bioactive compounds against Salmonella. Int J Nutr Sci Food Tech 1:1–9.  https://doi.org/10.25141/2471-7371-2015-1.0001CrossRefGoogle Scholar
  92. 92.
    Ding WY, Li YH, Lian H, Ai XY, Zhao YL, Yang YB et al (2017) Sub-minimum inhibitory concentrations of rhubarb water extracts inhibit Streptococcus suis biofilm formation. Front Pharmacol 8:425.  https://doi.org/10.3389/fphar.2017.00425CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Robb HF (1919) Death from rhubarb leaves due to oxalic acid poisoning. JAMA (J Am Med Assoc) 73:627–662Google Scholar
  94. 94.
    Tallqvist H, Vaananen I (1960) Death of a child from oxalic acid poisoning due to eating rhubarb leaves. Ann Paediatr Fenn 6:144–147PubMedGoogle Scholar
  95. 95.
    Lamminpää A, Kinos M (1996) Plant poisonings in children. Hum Exp Toxicol 15:245–249PubMedCrossRefGoogle Scholar
  96. 96.
    Prenen JAC, Boer P, Dorhout Mees EJ (1984) Absorption kinetics of oxalate from oxalate-rich food in man. Am J Clin Nutr 40:1007–1010PubMedCrossRefGoogle Scholar
  97. 97.
    Jacobziner H, Raybin HW (1962) Rhubarb poisoning. NY J Med 62:1676–1678Google Scholar
  98. 98.
    Diffey BL, Lawlor EF, Hindson TC (1984) Photoallergic contact dermatitis to rhubarb wine. Photo-Dermatology 1:43–44PubMedGoogle Scholar
  99. 99.
    Kwan TH, Tong MK, Leung KT et al (2006) Acute renal failure associated with prolonged intake of slimming pills containing anthraquinones. Hong Kong Med J 12:394–397PubMedGoogle Scholar
  100. 100.
    Fang F, Wang JB, Zhao YL, Jin C, Kong WJ et al (2011) Tissue distribution of free anthraquinones in SD rats after orally administered extracts from raw and prepared rhubarbs. Acta Pharm Sin 46(3):350–354Google Scholar
  101. 101.
    Shukla V, Asthana S, Gupta P, Dwivedi P, Tripathi A, Das M (2017) Toxicity of naturally occurring anthraquinones (Ch-1), In: Adv in Mol Toxicol. Elsevier, pp 1–50Google Scholar
  102. 102.
    Wang JB, Zhao HP, Zhao YL et al (2011) Hepatotoxicity or hepatoprotection? Pattern recognition for the paradoxical effect of the Chinese herb Rheumpalmatum L. in treating rat liver injury. PLoS One 6(9):e24498.  https://doi.org/10.1371/journal.pone.0024498CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Xing XY, Zhao YL, Kong WJ, Wang JB, Jia L et al (2011) Investigation of the “dose-time-response” relationships of rhubarb on carbon tetrachloride-induced liver injury in rats. J Ethnopharmacol 135:575–581PubMedCrossRefGoogle Scholar
  104. 104.
    Zhao Y, Li BS, Zhao XY, Liu X, Wang YJ et al (2019) Study on efficacy-enhancing and toxicity-reducing of different rhubarb processed products combined with atorvastatin. Chin Tradit Herbal Drugs 50:4398–4404Google Scholar
  105. 105.
    Ding Y, Xu F, Xiong XL, Li HR (2014) Effect of emodin on expression of farnesoid X receptor in rats with acute cholestatic hepatitis. Chin J Contemp Pediatr 16:424–429Google Scholar
  106. 106.
    Cheng Y, Zhang H, Qu L, He Y, Routledge MN, Gong YY, Qiao B (2020) Identification of rhein as the metabolite responsible for toxicity of rhubarb anthraquinones. Food Chem 331:127363.  https://doi.org/10.1016/j.foodchem.2020.127363CrossRefPubMedGoogle Scholar
  107. 107.
    He J, Si X, Ji M et al (2017) Effect of rhubarb on extravascular lung water in patients with acute respiratory distress syndrome. Rev Assoc Med Bras 63(5):435–440PubMedCrossRefGoogle Scholar
  108. 108.
    Zhou Y, Wang L, Huang X, Li H, Xiong Y (2016) Add-on effect of crude rhubarb to somatostatin for acute pancreatitis: a meta-analysis of randomized controlled trials. J Ethnopharmacol 194:495–505PubMedCrossRefGoogle Scholar
  109. 109.
    Wang Y, Fan X, Tang T et al (2016) Rhein and rhubarb similarly protect the blood-brain barrier after experimental traumatic brain injury via gp91phox subunit of NADPH oxidase/ROS/ERK/MMP-9 signaling pathway. Sci Rep 6:37098PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Esposito F, Carli I, Vecchio CD, Xu L, Corona A et al (2016) Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine 23:1383–1391PubMedCrossRefGoogle Scholar
  111. 111.
    Neyrinck AM, Etxeberria U, Taminiau B et al (2017) Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Mol Nutr Food Res 61(1).  https://doi.org/10.1002/mnfr.201500899
  112. 112.
    Deng N, Yi Y, Liang AH et al (2018) Mechanism of nephrotoxicity of rhubarb in rats. Zhongguo Zhong Yao Za Zhi 43(13):2777–2783PubMedGoogle Scholar
  113. 113.
    Yin LL, Ye ZZ, Tang LJ, Guo L, Huang WM (2018) Effect of rhubarb on neonatal rats with bronchopulmonary dysplasia induced by hyperoxia. Zhongguo Dang Dai ErKeZaZhi 20(5):410–415Google Scholar
  114. 114.
    Shimizu K, Kageyama M, Ogura H, Yamada T, Shimazu T (2018) Effects of rhubarb on intestinal dysmotility in critically ill patients. Intern Med 57(4):507–510PubMedCrossRefGoogle Scholar
  115. 115.
    Liu T, Zhou J, Cui H et al (2019) iTRAQ-based quantitative proteomics reveals the neuroprotection of rhubarb in experimental intracerebral hemorrhage. J Ethnopharmacol 232:244–254PubMedCrossRefGoogle Scholar
  116. 116.
    Chen JQ, Li DW, Chen YY et al (2019) Elucidating dosage-effect relationship of different efficacy of rhubarb in constipation model rats by factor analysis. J Ethnopharmacol 238:111868.  https://doi.org/10.1016/j.jep.2019.111868CrossRefPubMedGoogle Scholar
  117. 117.
    Meng F, Du C, Zhang Y et al (2020) Protective effect of rhubarb combined with ulinastatin for patients with sepsis. Medicine (Baltimore) 99(7):e18895CrossRefGoogle Scholar
  118. 118.
    Espinosa A, Paz-y-Mi~no- CG, Santos Y, Mac H, Nadeau M et al (2020) Anti-amebic effects of Chinese rhubarb (Rheum palmatum) leaves extract, the anthraquinone rhein and related compounds. Heliyon 6:e03693.  https://doi.org/10.1016/j.heliyon.2020.e03693CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH)Estonian University of Life SciencesTartuEstonia

Personalised recommendations