Skip to main content

Free Drug Theory

The ADME Encyclopedia

Synonyms

Free drug hypotheiss

Definition

The free drug theory (sometimes also termed free drug hypothesis) provides a conceptual framework increasingly used to understand pharmacokinetics/pharmacodynamics (PK/PD) relationships [1]. It underlines the central role of free (or unbound) drug concentration at the site of action (the surroundings of the drug target) as determinant of in vivo efficacy and pharmacokinetics. A deep understanding of this theory can also be helpful to establish in vitro-in vivo correlations or, alternatively, to provide explanations to absence of clear correlations between in vitro and in vivo studies.

The free drug theory can be enunciated in two parts [2].

The free drug theory part I states that, at steady state, the unbound drug concentration will be the same on both sides of a biological membrane. Provided that some requisites are verified, thus, the free drug concentration will be the same in plasma, extracellular fluid, and intracellular fluid.

The free...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102(9):2953–94.

    Article  CAS  Google Scholar 

  2. Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–39.

    Article  CAS  Google Scholar 

  3. Somogyi A, Gugler R. Clinical pharmacokinetics of cimetidine. Clin Pharmacokinet. 1983;8(6):463–95.

    Article  CAS  Google Scholar 

  4. Ziemniak JA, Shank RG, Schentag JJ. The partitioning of cimetidine into canine cerebrospinal fluid. Drug Metab Dispos. 1984;12(2):217–21.

    CAS  PubMed  Google Scholar 

  5. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.

    Article  CAS  Google Scholar 

  6. Saggar JK, Fung AS, Patel KJ, Tannock IF. Use of molecular biomarkers to quantify the spatial distribution of effects of anticancer drugs in solid tumors. Mol Cancer Ther. 2013;12(4):542–52.

    Article  CAS  Google Scholar 

  7. Al-Abd AM, Khedr A, Atteiah SG, Al-Abbasi FA. Intra-tumoral drug concentration mapping within solid tumor micro-milieu using in-vitro model and doxorubicin as a model drug. Saudi Pharm J. 2020;28(6):754–62.

    Article  CAS  Google Scholar 

  8. de Witte WEA, Danhof M, van der Graaf PH, de Lange ECM. In vivo target residence time and kinetic selectivity: the association rate constant as determinant. Trends Pharmacol Sci. 2016;37(10):831–42.

    Article  Google Scholar 

  9. Trainor GL. The importance of plasma protein binding in drug discovery. Expert Opin Drug Discovery. 2007;2(1):51–64.

    Article  CAS  Google Scholar 

  10. Liu X, Chen C, Hop CE. Do we need to optimize plasma protein and tissue binding in drug discovery? Curr Top Med Chem. 2011;11(4):450–66.

    Article  CAS  Google Scholar 

  11. Pinto DJ, Orwat MJ, Wang S, Fevig JM, Quan ML, Amparo E, et al. Discovery of 1-[3-(aminomethyl)phenyl]-N-3-fluoro-2′-(methylsulfonyl)-[1,1′-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423), a highly potent, selective, and orally bioavailable inhibitor of blood coagulation factor Xa. J Med Chem. 2001;44(4):566–78.

    Google Scholar 

  12. Blakeley D, Sykes DA, Ensor P, Bertran E, Aston PJ, Charlton SJ. Simulating the influence of plasma protein on measured receptor affinity in biochemical assays reveals the utility of Schild analysis for estimating compound affinity for plasma proteins. Br J Pharmacol. 2015;172(21):5037–49.

    Article  CAS  Google Scholar 

  13. Wanat K. Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol Biol Rep. 2020;47(4):3221–31.

    Article  CAS  Google Scholar 

  14. Berezhkovskiy LM. On the influence of protein binding on pharmacological activity of drugs. J Pharm Sci. 2010;99(4):2153–65.

    Article  CAS  Google Scholar 

  15. Rolan PE. Plasma protein binding displacement interactions – why are they still regarded as clinically important? Br J Clin Pharmacol. 1994;37(2):125–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Talevi, A., Bellera, C.L. (2021). Free Drug Theory. In: The ADME Encyclopedia. Springer, Cham. https://doi.org/10.1007/978-3-030-51519-5_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51519-5_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51519-5

  • Online ISBN: 978-3-030-51519-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Free Drug Theory
    Published:
    04 December 2021

    DOI: https://doi.org/10.1007/978-3-030-51519-5_51-2

  2. Original

    Free Drug Theory
    Published:
    02 June 2021

    DOI: https://doi.org/10.1007/978-3-030-51519-5_51-1