Encyclopedia of Molecular Pharmacology

Living Edition
| Editors: Stefan Offermanns, Walter Rosenthal

Epithelial Na+ Channel

  • Silke Haerteis
  • Stephan KellenbergerEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-21573-6_57-1
  • 17 Downloads

Definition

The epithelial Na+ channel (ENaC) is a member of the ENaC/degenerin family of non-voltage-gated ion channels. This channel is localized in the apical membranes of Na+-absorbing epithelia such as the aldosterone-sensitive distal nephron, respiratory epithelia, and distal colon. ENaC forms a heteromeric channel made of homologous subunits – α, β, and γENaC. The human genes encoding these three subunits are named SCNN1A, SCNN1B, and SCNN1G and are located in chromosome 12 (α) and 16 (β γ), respectively. In humans, but not in mice or rat, a fourth subunit, δENaC, exists. So far, little is known about the physiological role and the functional properties of this additional subunit; δENaC may replace the αENaC subunit to form functional heterotrimers.

Basic Characteristics

Channel Family and Structural Organization

ENaC belongs to the ENaC/degenerin family of ion channels that include in mammals the neuronal acid-sensing ion channels (ASICs) and the bile acid-sensing ion channels...
This is a preview of subscription content, log in to check access.

References

  1. Artunc F, Worn M, Schork A, Bohnert BN (2019) Proteasuria-the impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol (Oxf) 225(4):e13249.  https://doi.org/10.1111/apha.13249CrossRefGoogle Scholar
  2. Bohnert BN, Menacher M, Janessa A, Worn M, Schork A, Daiminger S, Kalbacher H, Haring HU, Daniel C, Amann K, Sure F, Bertog M, Haerteis S, Korbmacher C, Artunc F (2018) Aprotinin prevents proteolytic epithelial sodium channel (ENaC) activation and volume retention in nephrotic syndrome. Kidney Int 93(1):159–172.  https://doi.org/10.1016/j.kint.2017.07.023CrossRefPubMedGoogle Scholar
  3. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS (2010) The cells and peripheral representation of sodium taste in mice. Nature 464(7286):297–301.  https://doi.org/10.1038/nature08783CrossRefPubMedPubMedCentralGoogle Scholar
  4. Couroux P, Farias P, Rizvi L, Griffin K, Hudson C, Crowder T, Tarran R, Tullis E (2019) First clinical trials of novel ENaC targeting therapy, SPX-101, in healthy volunteers and adults with cystic fibrosis. Pulm Pharmacol Ther:101819.  https://doi.org/10.1016/j.pupt.2019.101819CrossRefGoogle Scholar
  5. Eastwood AL, Goodman MB (2012) Insight into DEG/ENaC channel gating from genetics and structure. Physiology (Bethesda) 27(5):282–290.  https://doi.org/10.1152/physiol.00006.2012CrossRefGoogle Scholar
  6. Garty H, Palmer LG (1997) Epithelial sodium channels: function, structure, and regulation. Physiol Rev 77(2):359–396CrossRefGoogle Scholar
  7. Haerteis S, Krappitz M, Bertog M, Krappitz A, Baraznenok V, Henderson I, Lindstrom E, Murphy JE, Bunnett NW, Korbmacher C (2012a) Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflugers Arch 464(4):353–365.  https://doi.org/10.1007/s00424-012-1138-3CrossRefPubMedPubMedCentralGoogle Scholar
  8. Haerteis S, Krappitz M, Diakov A, Krappitz A, Rauh R, Korbmacher C (2012b) Plasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the g-subunit of the human epithelial sodium channel. J Gen Physiol 140(4):375–389.  https://doi.org/10.1085/jgp.201110763CrossRefPubMedPubMedCentralGoogle Scholar
  9. Haerteis S, Krappitz A, Krappitz M, Murphy JE, Bertog M, Krueger B, Nacken R, Chung H, Hollenberg MD, Knecht W, Bunnett NW, Korbmacher C (2014) Proteolytic activation of the human epithelial sodium channel by trypsin IV and trypsin I involves distinct cleavage sites. J Biol Chem 289(27):19067–19078.  https://doi.org/10.1074/jbc.M113.538470CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hanukoglu I, Hanukoglu A (2016) Epithelial sodium channel (ENaC) family: phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579(2):95–132.  https://doi.org/10.1016/j.gene.2015.12.061CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ilyaskin AV, Diakov A, Korbmacher C, Haerteis S (2016) Activation of the human epithelial sodium channel (ENaC) by bile acids involves the Degenerin site. J Biol Chem 291(38):19835–19847.  https://doi.org/10.1074/jbc.M116.726471CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 a resolution and low pH. Nature 449(7160):316–323CrossRefGoogle Scholar
  13. Kashlan OB, Kleyman TR (2011) ENaC structure and function in the wake of a resolved structure of a family member. Am J Physiol Renal Physiol 301(4):F684–F696.  https://doi.org/10.1152/ajprenal.00259.2011CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kashlan OB, Adelman JL, Okumura S, Blobner BM, Zuzek Z, Hughey RP, Kleyman TR, Grabe M (2011) Constraint-based, homology model of the extracellular domain of the epithelial Na+ channel {alpha} subunit reveals a mechanism of channel activation by proteases. J Biol Chem 286(1):649–660.  https://doi.org/10.1074/jbc.M110.167098. [pii]CrossRefPubMedGoogle Scholar
  15. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82(3):735–767CrossRefGoogle Scholar
  16. Kellenberger S, Schild L (2015) International Union of Basic and Clinical Pharmacology. XCI. Structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol Rev 67(1):1–35.  https://doi.org/10.1124/pr.114.009225CrossRefPubMedGoogle Scholar
  17. Kitamura K, Tomita K (2010) Regulation of renal sodium handling through the interaction between serine proteases and serine protease inhibitors. Clin Exp Nephrol 14(5):405–410.  https://doi.org/10.1007/s10157-010-0299-7CrossRefPubMedGoogle Scholar
  18. Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 284(31):20447–20451.  https://doi.org/10.1074/jbc.R800083200CrossRefPubMedPubMedCentralGoogle Scholar
  19. Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458(1):111–135.  https://doi.org/10.1007/s00424-009-0656-0CrossRefPubMedGoogle Scholar
  20. Marunaka Y, Niisato N, Taruno A, Ohta M, Miyazaki H, Hosogi S, Nakajima K, Kusuzaki K, Ashihara E, Nishio K, Iwasaki Y, Nakahari T, Kubota T (2011) Regulation of epithelial sodium transport via epithelial Na+ channel. J Biomed Biotechnol 2011:978196.  https://doi.org/10.1155/2011/978196CrossRefPubMedPubMedCentralGoogle Scholar
  21. Moore PJ, Tarran R (2018) The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets 22(8):687–701.  https://doi.org/10.1080/14728222.2018.1501361CrossRefPubMedGoogle Scholar
  22. Noreng S, Bharadwaj A, Posert R, Yoshioka C, Baconguis I (2018) Structure of the human epithelial sodium channel by cryo-electron microscopy. eLife 7.  https://doi.org/10.7554/eLife.39340
  23. Ray EC, Kleyman TR (2015) Cutting it out: ENaC processing in the human nephron. J Am Soc Nephrol 26(1):1–3.  https://doi.org/10.1681/ASN.2014060618CrossRefPubMedGoogle Scholar
  24. Rossier BC, Stutts MJ (2009) Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu Rev Physiol 71:361–379.  https://doi.org/10.1146/annurev.physiol.010908.163108CrossRefPubMedGoogle Scholar
  25. Salih M, Gautschi I, van Bemmelen MX, Di Benedetto M, Brooks AS, Lugtenberg D, Schild L, Hoorn EJ (2017) A missense mutation in the extracellular domain of alphaENaC causes Liddle syndrome. J Am Soc Nephrol 28(11):3291–3299.  https://doi.org/10.1681/ASN.2016111163CrossRefPubMedPubMedCentralGoogle Scholar
  26. Stockand JD, Staruschenko A, Pochynyuk O, Booth RE, Silverthorn DU (2008) Insight toward epithelial Na(+) channel mechanism revealed by the acid-sensing ion channel 1 structure. IUBMB Life 60(9):620–628CrossRefGoogle Scholar
  27. Tetti M, Monticone S, Burrello J, Matarazzo P, Veglio F, Pasini B, Jeunemaitre X, Mulatero P (2018) Liddle syndrome: review of the literature and description of a new case. Int J Mol Sci 19(3).  https://doi.org/10.3390/ijms19030812CrossRefGoogle Scholar
  28. Wang XP, Im SJ, Balchak DM, Montalbetti N, Carattino MD, Ray EC, Kashlan OB (2019) Murine epithelial sodium (Na(+)) channel regulation by biliary factors. J Biol Chem 294(26):10182–10193.  https://doi.org/10.1074/jbc.RA119.007394CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2020

Authors and Affiliations

  1. 1.Institute for Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
  2. 2.Département des Sciences biomédicales de l’UniversitéLausanneSwitzerland