Encyclopedia of Molecular Pharmacology

Living Edition
| Editors: Stefan Offermanns, Walter Rosenthal

AMP-Activated Protein Kinase

  • D. Grahame HardieEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-21573-6_177-1
  • 6 Downloads

Synonyms

Definition

AMP-activated protein kinase (AMPK) is a member of the serine/threonine protein kinase family, which modify other proteins (target proteins) by attaching phosphate groups to the side chains of serine or threonine, thus modifying their function. The primary role of AMPK is to sense energy status by monitoring the cellular ratios of AMP:ATP and ADP:AMP. Once activated by energy stress, AMPK acts to restore homeostasis by switching off downstream processes consuming ATP (such as cell growth and proliferation) while switching on catabolic processes generating ATP (such as glucose uptake and mitochondrial biogenesis). AMPK is also involved in regulating whole-body energy balance and has been identified as a key target in treating disorders such as obesity and type 2 diabetes.

Basic Characteristics

Structure

AMPK occurs universally in the form of heterotrimeric complexes containing a catalytic α subunit and regulatory β and γ subunits (Ross et al. 2016). Humans...

This is a preview of subscription content, log in to check access.

References

  1. Cokorinos EC, Delmore J, Reyes AR, Albuquerque B, Kjobsted R, Jorgensen NO, Tran JL, Jatkar A, Cialdea K, Esquejo RM, Meissen J, Calabrese MF, Cordes J, Moccia R, Tess D, Salatto CT, Coskran TM, Opsahl AC, Flynn D, Blatnik M, Li W, Kindt E, Foretz M, Viollet B, Ward J, Kurumbail RG, Kalgutkar AS, Wojtaszewski JFP, Cameron KO, Miller RA (2017) Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab 25(5):1147–1159.e1110.  https://doi.org/10.1016/j.cmet.2017.04.010CrossRefPubMedGoogle Scholar
  2. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6):403–416CrossRefGoogle Scholar
  3. Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565CrossRefGoogle Scholar
  4. Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB (2012) p70S6 Kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake. Cell Metab 16(1):104–112.  https://doi.org/10.1016/j.cmet.2012.05.010CrossRefPubMedPubMedCentralGoogle Scholar
  5. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461.  https://doi.org/10.1126/science.1196371CrossRefPubMedGoogle Scholar
  6. Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120(7):2355–2369.  https://doi.org/10.1172/JCI40671CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O’Neill HM, Ford RJ, Palanivel R, O’Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR (2013) Single phosphorylation sites in ACC1 and ACC2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19(12):1649–1654.  https://doi.org/10.1038/nm.3372CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gomez-Galeno JE, Dang Q, Nguyen TH, Boyer SH, Grote MP, Sun Z, Chen M, Craigo WA, van Poelje PD, MacKenna DA, Cable EE, Rolzin PA, Finn PD, Chi B, Linemeyer DL, Hecker SJ, Erion MD (2010) A potent and selective AMPK activator that inhibits de novo lipogenesis. ACS Med Chem Lett 1:478–482CrossRefGoogle Scholar
  9. Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26(3):190–201.  https://doi.org/10.1016/j.tcb.2015.10.013CrossRefPubMedGoogle Scholar
  10. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271(44):27879–27887CrossRefGoogle Scholar
  11. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRADa/b and MO25a/b are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2(4):28.  https://doi.org/10.1186/1475-4924-2-28CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, Hardie DG (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11(6):554–565.  https://doi.org/10.1016/j.cmet.2010.04.001. S1550-4131(10)00112-9 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336(6083):918–922.  https://doi.org/10.1126/science.1215327CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, Day EA, Salt IP, Steinberg GR, Hardie DG (2016) The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65(9):2784–2794.  https://doi.org/10.2337/db16-0058CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, Hawley SA, Shpiro N, Viollet B, Barron D, Kemp BE, Steinberg GR, Hardie DG, Sakamoto K (2014) Mechanism of action of compound-13: an alpha1-selective small molecule activator of AMPK. Chem Biol 21(7):866–879.  https://doi.org/10.1016/j.chembiol.2014.05.014CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hunter RW, Hughey CC, Lantier L, Sundelin EI, Peggie M, Zeqiraj E, Sicheri F, Jessen N, Wasserman DH, Sakamoto K (2018) Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat Med 24(9):1395–1406.  https://doi.org/10.1038/s41591-018-0159-7CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K (2002) Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 277(6):3829–3835.  https://doi.org/10.1074/jbc.M107895200CrossRefPubMedGoogle Scholar
  18. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388.  https://doi.org/10.1016/j.cmet.2011.03.009. S1550-4131(11)00096-9 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li M, Zhang CS, Zong Y, Feng JW, Ma T, Hu M, Lin Z, Li X, Xie C, Wu Y, Jiang D, Li Y, Zhang C, Tian X, Wang W, Yang Y, Chen J, Cui J, Wu YQ, Chen X, Liu QF, Wu J, Lin SY, Ye Z, Liu Y, Piao HL, Yu L, Zhou Z, Xie XS, Hardie DG, Lin SC (2019) Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab.  https://doi.org/10.1016/j.cmet.2019.05.018
  20. Merrill GF, Kurth EJ, Hardie DG, Winder WW (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273(6):E1107–E1112.  https://doi.org/10.1152/ajpendo.1997.273.6.E1107CrossRefPubMedGoogle Scholar
  21. Muise ES, Guan HP, Liu J, Nawrocki AR, Yang X, Wang C, Rodriguez CG, Zhou D, Gorski JN, Kurtz MM, Feng D, Leavitt KJ, Wei L, Wilkening RR, Apgar JM, Xu S, Lu K, Feng W, Li Y, He H, Previs SF, Shen X, van Heek M, Souza SC, Rosenbach MJ, Biftu T, Erion MD, Kelley DE, Kemp DM, Myers RW, Sebhat IK (2019) Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver. PLoS One 14(2):e0211568.  https://doi.org/10.1371/journal.pone.0211568CrossRefPubMedPubMedCentralGoogle Scholar
  22. Munday MR, Campbell DG, Carling D, Hardie DG (1988) Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem 175(2):331–338CrossRefGoogle Scholar
  23. Myers RW, Guan HP, Ehrhart J, Petrov A, Prahalada S, Tozzo E, Yang X, Kurtz MM, Trujillo M, Trotter DG, Feng D, Xu S, Eiermann G, Holahan MA, Rubins D, Conarello S, Niu X, Souza SC, Miller C, Liu J, Lu K, Feng W, Li Y, Painter RE, Milligan JA, He H, Liu F, Ogawa A, Wisniewski D, Rohm RJ, Wang L, Bunzel M, Qian Y, Zhu W, Wang H, Bennet B, Scheuch LL, Fernandez GE, Li C, Klimas M, Zhou G, van Heek M, Biftu T, Weber A, Kelley DE, Thornberry N, Erion MD, Kemp DM, Sebhat IK (2017) Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357(6350):507–511.  https://doi.org/10.1126/science.aah5582CrossRefPubMedGoogle Scholar
  24. O’Donnell AF, Schmidt MC (2019) AMPK-mediated regulation of alpha-arrestins and protein trafficking. Int J Mol Sci 20(3):515.  https://doi.org/10.3390/ijms20030515CrossRefPubMedCentralGoogle Scholar
  25. Ross FA, MacKintosh C, Hardie DG (2016) AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J 283(16):2987–3001.  https://doi.org/10.1111/febs.13698CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ross FA, Hawley SA, Auciello FR, Gowans GJ, Atrih A, Lamont DJ, Hardie DG (2017) Mechanisms of paradoxical activation of AMPK by the kinase inhibitors SU6656 and sorafenib. Cell Chem Biol 24(7):813–824.  https://doi.org/10.1016/j.chembiol.2017.05.021CrossRefPubMedPubMedCentralGoogle Scholar
  27. Salatto CT, Miller RA, Cameron KO, Cokorinos E, Reyes A, Ward J, Calabrese M, Kurumbail R, Rajamohan F, Kalgutkar AS, Tess DA, Shavnya A, Genung NE, Edmonds DJ, Jatkar A, Maciejewski BS, Amaro M, Gandhok H, Monetti M, Cialdea K, Bollinger E, Kreeger JM, Coskran TM, Opsahl AC, Boucher GG, Birnbaum MJ, DaSilva-Jardine P, Rolph T (2017) Selective activation of AMPK b1-containing isoforms improves kidney function in a rat model of diabetic nephropathy. J Pharmacol Exp Ther 361(2):303–311.  https://doi.org/10.1124/jpet.116.237925CrossRefPubMedGoogle Scholar
  28. Shitan N (2016) Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotechnol Biochem 80(7):1283–1293.  https://doi.org/10.1080/09168451.2016.1151344CrossRefPubMedGoogle Scholar
  29. Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Loson OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC, Shaw RJ (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351(6270):275–281.  https://doi.org/10.1126/science.aab4138CrossRefPubMedPubMedCentralGoogle Scholar
  30. Vara-Ciruelos D, Russell FM, Hardie DG (2019) The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? Open Biol 9(7):190099.  https://doi.org/10.1098/rsob.190099CrossRefPubMedPubMedCentralGoogle Scholar
  31. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13(22):2004–2008CrossRefGoogle Scholar
  32. Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT, Martin SR, Carling D, Gamblin SJ (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449(7161):496–500CrossRefGoogle Scholar
  33. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017.  https://doi.org/10.1038/ncomms4017CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yang Y, Atasoy D, Su HH, Sternson SM (2011) Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146(6):992–1003.  https://doi.org/10.1016/j.cell.2011.07.039. S0092-8674(11)00882-8 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M, Wu YQ, Li TY, Ye Z, Lin SY, Yin H, Piao HL, Hardie DG, Lin SC (2017) Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548(7665):112–116.  https://doi.org/10.1038/nature23275CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174CrossRefGoogle Scholar
  37. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99(25):15983–15987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2020

Authors and Affiliations

  1. 1.Division of Cell Signalling and Immunology, School of Life SciencesUniversity of DundeeDundeeUK