Advertisement

Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Xanthomonadales

  • Tony GutierrezEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The Xanthomonadales comprises a morphologically and physiologically diverse order of bacteria, though its classification has been contentious pertaining to its division into families. Currently, the order is divided into the two families, Xanthomonadaceae and Rhodanobacteraceae, that collectively contain members from approximately 29 genera. Hydrocarbon degraders of the family Xanthomonadaceae include members of the genera Arenimonas, Luteimonas, Pseudoxanthomonas, Stenotrophomonas, Xanthomonas, and Xylella, whereas those of the family Rhodanobacteraceae include Dokdonella, Dyella, Frateuria, Luteibacter, Oleiagrimonas, Rhodanobacter, and Rudaea. These organisms are categorized as generalist hydrocarbon-degraders based on their ability to also utilize various other carbon substrates as a sole source of carbon and energy. To-date, of the nine recognized genera of obligate hydrocarbonoclastic bacteria that are able to degrade hydrocarbons almost exclusively as a preferred carbon and energy source, only Algiphilus and Polycyclovorans are represented within the order Xanthomonadales, principally within the family Xanthomonadaceae. The type species of these two genera are Algiphilus aromaticivorans and Polycyclovorans algicola, which respectively were originally isolated from the phycosphere of a marine dinoflagellate and diatom. Members of these two genera have also been identified living associated with various other species of marine eukaryotic phytoplankton, and sequencing surveys have identified their presence in a wide variety of environments that include oil-contaminated and noncontaminated marine and terrestrial environments as well as human skin.

References

  1. Bacosa HP, Inoue C (2015) Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J Hazard Mater 283:689–697CrossRefPubMedGoogle Scholar
  2. Braaz R, Armbruster W, Jendrossek D (2005) Heme-dependent rubber oxygenase RoxA of Xanthomonas sp. cleaves the carbon backbone of poly(cis-1,4-isoprene) by a dioxygenase mechanism. Appl Environ Microbiol 71:2473–2478CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cébron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13:722–736CrossRefPubMedGoogle Scholar
  4. Chang H-K, Zylstra GJ (2010) Xanthomonads. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1805–1811CrossRefGoogle Scholar
  5. Chen S, Yin H, Ye J, Peng H, Zhang N, He B (2013) Effect of copper(II) on biodegradation of benzo[a]pyrene by Stenotrophomonas maltophilia. Chemosphere 90:1811–1820CrossRefPubMedGoogle Scholar
  6. Chen S, Yin H, Ye J, Peng H, Liu Z, Dang Z, Chang J (2014) Influence of co-existed benzo[a]pyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation. Bioresour Technol 158:181–187CrossRefPubMedGoogle Scholar
  7. Cheng T-W, Chang Y-H, Tang S-L, Tseng C-H, Chiang P-W, Chang K-T, Sun C-H, Chen Y-G, Kuo H-C, Wang C-H, Chu P-H, Song S-R, Wang P-L, Lin L-H (2012) Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano. ISME J 6:2280–2290CrossRefPubMedPubMedCentralGoogle Scholar
  8. Choi EJ, Jin HM, Lee SH, Math RK, Madsen EL, Jeon CO (2013) Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 79:663–671CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fang T, Wang H, Huang Y, Zhou H, Dong P (2015) Oleiagrimonas soli gen. nov., sp. nov., a genome-sequenced gammaproteobacterium isolated from an oilfield. Int J Syst Evol Microbiol 65:1666–1671CrossRefPubMedGoogle Scholar
  10. Friedrich MM, Lipski A (2008) Alkanibacter difficilis gen. nov., sp. nov. and Singularimonas variicoloris gen. nov., sp. nov., hexane-degrading bacteria isolated from a hexane-treated biofilter. Int J Syst Evol Microbiol 58:2324–2329CrossRefPubMedGoogle Scholar
  11. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, NISC Comparative Sequencing Program, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gutierrez T (2017) Cultivating aerobic hydrocarbon-degrading bacteria from micro-algae. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Springer, Berlin/Heidelberg.  https://doi.org/10.1007/8623_2014_1CrossRefGoogle Scholar
  13. Gutierrez T, Green DH, Nichols PD, Whitman WB, Semple KT, Aitken MD (2012) Algiphilus aromaticivorans gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from a culture of the marine dinoflagellate Lingulodinium polyedrum, and proposal of Algiphilaceae fam. nov. Int J Syst Evol Microbiol 62:2743–2749CrossRefPubMedGoogle Scholar
  14. Gutierrez T, Green DH, Whitman WB, Nichols PD, Semple KT, Aitken MD (2013) Polycyclovorans algicola gen. nov., sp. nov., an aromatic hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl Environ Microbiol 79:205–214CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hamann C, Hegemann J, Hildebrandt A (1999) Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol Lett 173:255–263CrossRefPubMedGoogle Scholar
  16. Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefPubMedGoogle Scholar
  17. Jiang X, Jiao N (2016) Vertical distribution of bacterial communities in the Indian Ocean as revealed by analyses of 16S rRNA and nasA genes. Indian J Microbiol 56:309–317CrossRefPubMedPubMedCentralGoogle Scholar
  18. Juhasz AL, Stanley GA, Britz ML (2000) Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30:396–401CrossRefPubMedGoogle Scholar
  19. Juteau P, Larocque R, Rho D, LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol 52:863–868CrossRefPubMedGoogle Scholar
  20. Kanaly RA, Harayama S, Watanabe K (2002) Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl Environ Microbiol 68:5826–5833CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kim JS, Crowley DE (2007) Microbial diversity in natural asphalts of the Rancho La Brea Tar Pits. Appl Environ Microbiol 73:4579–4591CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, NISC Comparative Sequence Program, Murray PR, Turner ML, Segre JA (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859CrossRefPubMedPubMedCentralGoogle Scholar
  23. Larsen H (1986) Halophilic and halotolerant microorganisms – an overview and historical perspective. FEMS Microbiol Rev 39:3–7CrossRefGoogle Scholar
  24. Lee EY, Jun YS, Cho K-S, Ryu HW (2002) Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c. J Air Waste Manage Assoc 52:400–406CrossRefGoogle Scholar
  25. Li A, Qu YY, Zhou JT, Gou M (2009) Isolation and characteristics of a novel biphenyl degrading bacterial strain, Dyella ginsengisoli LA-4. J Environ Sci 21:211–217CrossRefGoogle Scholar
  26. Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M (2009) Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J Biosci Bioeng 108:400–407CrossRefPubMedGoogle Scholar
  27. Luo YR, Tian Y, Huang X, Yan CL, Hong HS, Lin GH, Zheng TL (2009) Analysis of community structure of a microbial consortium capable of degrading benzo[a]pyrene by DGGE. Mar Pollut Bull 58:1159–1163CrossRefPubMedGoogle Scholar
  28. Mahjoubi M, Jaouani A, Guesmi A, Amor SB, Jouini A, Cherif H, Najjari A, Boudabous A, Koubaa N, Cherif A (2013) Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential. New Biotechnol 30:723–733CrossRefGoogle Scholar
  29. Mangwani N, Shukla SK, Kumari S, Rao TS, Das S (2014) Characterization of Stenotrophomonas acidaminiphila NCW-702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons. J Appl Microbiol 117:1012–1024CrossRefPubMedGoogle Scholar
  30. Manickam N, Misra R, Mayilraj S (2007) A novel pathway for the biodegradation of γ-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12. J Appl Microbiol 102:1468–1478CrossRefPubMedGoogle Scholar
  31. Muangchinda C, Pansri R, Wongwongsee W, Pinyakong O (2013) Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand. J Appl Microbiol 114:1311–1324CrossRefPubMedGoogle Scholar
  32. Mukherjee P, Roy P (2013) Copper enhanced monooxygenase activity and FT-IR spectroscopic characterization of biotransformation products in trichloroethylene degrading bacterium: Stenotrophomonas maltophilia PM102. Biomed Res Int 2013:723680Google Scholar
  33. Nalin R, Simonet P, Vogel TM, Normand P (1999) Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23CrossRefPubMedGoogle Scholar
  34. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE, Gupta RS (2015) A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie Van Leeuwenhoek 107:467–485CrossRefPubMedGoogle Scholar
  35. Nopcharoenkul W, Netsakulnee P, Pinyakong O (2013) Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402. Biodegradation 24:387–397CrossRefPubMedGoogle Scholar
  36. Palleroni NJ, Port AM, Chang H-K, Zylstra GJ (2004) Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int J Syst Evol Microbiol 54:1203–1207CrossRefPubMedGoogle Scholar
  37. Papizadeh M, Ardakani MR, Motamedi H, Rasouli I, Zarei M (2011) C–S targeted biodegradation of dibenzothiophene by Stenotrophomonas sp. NISOC-04. Appl Biochem Biotechnol 165:938–948CrossRefPubMedGoogle Scholar
  38. Patel V, Cheturvedula S, Madamwar D (2012) Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. J Hazard Mater 201–202:43–51CrossRefPubMedGoogle Scholar
  39. Patel V, Munot H, Shouche Y, Madamwar D (2014) Response of bacterial community structure to seasonal fluctuation and anthropogenic pollution on coastal water of Alang-Sosiya ship breaking yard, Bhavnagar, India. Bioresour Technol 161:362–370CrossRefPubMedGoogle Scholar
  40. Saddler GS, Bradbury JF (2005) Family I. Xanthomonadaceae fam. nov. The Proteobacteria, part B. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, p 63CrossRefGoogle Scholar
  41. Singh SK, Kotakonda A, Kapardar RK, Kankipati HK, Rao PS, Sankaranarayanan PM, Vetaikorumagan SR, Gundlapally SR, Nagappa R, Shivaji S (2015) Response of bacterioplankton to iron fertilization of the Southern Ocean. Antarctica Front Microbiol 6:863PubMedGoogle Scholar
  42. Sivakumar T, Sivasankara Narayani S, Shankar T, Vijayabaskar P (2012) Optimization of cultural conditions for exopolysaccharides production by Frateuria aurentia. Int J Appl Biol Pharm Technol 3:133–143Google Scholar
  43. Sheu S-Y, Cho N-T, Arun AB, Chen W-M (2011) Proposal of Solimonas aquatic sp. nov., reclassification of Sinobacter flavus Zhou et al. 2008 as Solimonas flava comb. nov. and Singularimonas variicoloris Friedrich and Lipski 2008 as Solimonas variicoloris comb. nov. and emended descriptions of the genus Solimonas and its type species Solimonas soli. Int J Syst Evol Microbiol 61:2284–2291Google Scholar
  44. Somaraja PK, Gayathri D, Ramaiah N (2013) Molecular characterization of 2-chlorobiphenyl degrading Stenotrophomonas maltiphilia GS-103. Bull Environ Contam Toxicol 91:148–153CrossRefPubMedGoogle Scholar
  45. Susilaningsih D, Okazaki F, Yopi, Widyastuti Y, Harayama S (2013) Isolation and screening of surfactant-producing bacteria from Indonesian marine environments and its application on bioremediation. Ann Bogorienses 17:43–53Google Scholar
  46. Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vicek C, Cardenas E, Mackova M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 7:e40653CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  48. Xin Y, Cao X, Wu P, Xue S (2014) Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol 52:729–733CrossRefPubMedGoogle Scholar
  49. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266CrossRefPubMedGoogle Scholar
  50. Yi J-L, Wang J, Li Q, Liu Z-X, Zhang L, Liu A-X, Yu J-F (2015) Draft genome sequence of the bacterium Lysobacter capsici X2-3, with a broad spectrum of antimicrobial activity against multiple plant-pathogenic microbes. Genome Announc 3:e00589-15CrossRefPubMedPubMedCentralGoogle Scholar
  51. Young C-C, Kämpfer P, Ho M-J, Busse H-J, Huber BE, Arun AB, Shen F-T, Lai W-A, Rekha PD (2007) Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int J Syst Evol Microbiol 57:2790–2793CrossRefPubMedGoogle Scholar
  52. Yuste L, Corbella ME, Turiegano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75CrossRefPubMedGoogle Scholar
  53. Zeng J, Deng L-J, Lou K, Zhang T, Yang H-M, Shi Y-W, Lin Q (2014) Molecular characterization of the planktonic microorganisms in water of two mountain brackish lakes. J Basic Microbiol 54:509–520CrossRefPubMedGoogle Scholar
  54. Zhang D-C, Liu H-C, Xin Y-H, Zhou Y-G, Schinner F, Margesin R (2010) Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:1581–1584CrossRefPubMedGoogle Scholar
  55. Zhou Y, Zhang Y-Q, Zhi X-Y, Wang X, Dong J, Chen Y, Lai R, Li W-J (2008) Description of Sinobacter flavus gen. nov., sp. nov., and proposal of Sinobacteraceae fam. nov. Int J Syst Evol Microbiol 58:184–189CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations