Advertisement

Hormoconis resinae, The Kerosene Fungus

  • Catherine RafinEmail author
  • Etienne Veignie
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The ascomycete Amorphotheca resinae Parbery (1969) is widely known by the anamorph name Hormoconis resinae (Lindau) Arx & G.A. de Vries or its obligate synonym Cladosporium resinae (Lindau) G.A. de Vries. It belongs to Saccharomyceta, Pezizomycotina, Leotiomyceta, Sordariomyceta, Leotiomycetes, Leotiomycetes incertae sedis, and Myxotrichaceae. This fungus has been isolated from natural environments (soil, freshwater, and marine) and manufactured environments. In particular, it grows in hydrocarbon-rich substrates such as jet fuel, diesel, petroleum, and wood preserved with creosote or coal tar. In the 1960s, the ascomycete A. resinae was reported as one of the most common fuel-deteriorating microorganisms. This species is known colloquially as the kerosene, petroleum, jet fuel, or creosote fungus. It utilizes aliphatic and aromatic hydrocarbons, as well as alcohols and acids. The processes involved in n-alkane uptake and metabolism by H. resinae have been studied in detail, and it has demonstrated a constitutive n-alkane-oxidizing system. Its growth can lead to serious biodeterioration of the final product quality, the formation of sludge, and deterioration of pipework and storage tanks, both in the refinery and at the end-user facility. H. resinae has a broad distribution and is commonly found in soil or water that could be potential sources of contamination for petroleum tanks, leading to biodeterioration and economic loss. Therefore, a considerable amount of literature has been reported on this species in the twentieth century, corresponding to the increase in the anthropogenic use of petroleum and its refined products. This chapter presents an overview of the research conducted on the so-called kerosene fungus.

References

  1. Ahearn DG, Meyers SP (1972) The role of fungi in the decomposition of hydrocarbons in the marine environment. In: Walters HA, Huek-van de Plas EH (eds) Biodeterioration of materials, vol 2. Applied Science Publishers, London, pp 12–18Google Scholar
  2. Allsopp D, Seal KJ (1986) Introduction to biodeterioration. Edward Arnold, New YorkGoogle Scholar
  3. Bailey CA, May ME (1979) Evaluation of microbiological test kits for hydrocarbon fuel systems. Appl Enviorn Microbiol 37:871–877Google Scholar
  4. Bento FM (2001) Biodeterioration of stored diesel oil: studies in Brazil. Int Biodeter Biodegr 47:107–112CrossRefGoogle Scholar
  5. Bento FM, Gaylarde CC (1996) Microbial contamination of stored diesel oil in Brazil. Rev Microbiol 27:192–196Google Scholar
  6. Bento FM, Gaylarde CC (1998) Effect of additives on fuel stability. A microbiological study. In: Gaylarde CC, Barbosa TC, Gabilan NH (eds) LABS 3. Third Latin American biodegradation and biodeterioration symposium. The British Phycological Society, paper no. 10, 1998Google Scholar
  7. Bento FM, Gaylarde CC (2001) Biodeterioration of stored diesel oil: studies in Brazil. Int Biodeter Biodegr 47:107–112CrossRefGoogle Scholar
  8. Bhatt GC (1970) The soil microfungi of white cedar forests in Ontario. Can J Bot 48:333–339CrossRefGoogle Scholar
  9. Carson DB, Cooney JJ (1988a) Spheroplast formation and partial purification of microbodies from hydrocarbon-grown cells of Cladosporium resinae. J Ind Microbiol 3:111–117CrossRefGoogle Scholar
  10. Carson DB, Cooney JJ (1988b) Characterization of partially purified microbodies from hydrocarbon-grown cells of Cladosporium resinae. Can J Microbiol 35:565–572CrossRefGoogle Scholar
  11. Christensen CM, Kaufert FH, Schmitz H, Allison JL (1942) Hormodendron resinae Lindau an inhabitant of wood impregnated with creosote and coal tar. Am J Bot 29:552–558CrossRefGoogle Scholar
  12. Clark AM, Hufford CD (1979) Microbial transformations of the sesquiterpene lactone costunolide. J Chem Soc Perkin Trans 1:3022–3028CrossRefGoogle Scholar
  13. Cofone L, Walker JD, Cooney JJ (1973) Utilization of hydrocarbons by Cladosporium resinae. J Gen Microbiol 76:243–246CrossRefPubMedGoogle Scholar
  14. Cooney JJ (1969) Effects of polyurethane foams on microbial growth in fuel-water systems. Appl Microbiol 17:227–231PubMedPubMedCentralGoogle Scholar
  15. Cooney JJ, Felix JA (1970) Polyurethane foams and foam additives in hydrocarbon fuel-water systems. Dev Ind Microbiol 11:210–224Google Scholar
  16. Cooney JJ, Kula TJ (1970) Growth and survival of organisms isolated from hydrocarbon fuel systems. Int Biodeterior Bull 6:109–114Google Scholar
  17. Cooney JJ, Proby CM (1971) Fatty acid composition of Cladosporium resinae grown on glucose and on hydrocarbons. J Bacteriol 108:777–781PubMedPubMedCentralGoogle Scholar
  18. Cooney JJ, Edmonds P, Brenner QM (1968) Growth and survival of fuel isolates in hydrocarbon-fuel emulsions. Appl Microbiol 16:569–571PubMedPubMedCentralGoogle Scholar
  19. Cooney JJ, Siporin C, Smucker RA (1980) Physiological and cytological responses to hydrocarbons by the hydrocarbon-using fungus Cladosporium resinae. Bot Mar 23:227–232Google Scholar
  20. Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Stud Mycol 58:33–56CrossRefPubMedPubMedCentralGoogle Scholar
  21. De Vries GA (1952) Contribution to the knowledge of the genus Cladosporium Link ex Fr. Bibl Mycol 3:46–56Google Scholar
  22. De Vries GA (1955) Cladosporium avellaneum de Vries, a synonym of Hormodendrum resinae Lindau. A Van Leeuw 21:166–168CrossRefGoogle Scholar
  23. Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120CrossRefPubMedGoogle Scholar
  24. Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi. IHW-Verlag, Eching, pp 1–672Google Scholar
  25. Edmonds P (1965) Selection of test organisms for use in evaluating microbial inhibitors in fuel-water systems. Appl Microbiol 13:823–824PubMedPubMedCentralGoogle Scholar
  26. Edmonds P, Cooney JJ (1967) Identification of microorganisms isolated from jet fuel systems. Appl Microbiol 15:411–416PubMedPubMedCentralGoogle Scholar
  27. Edmonds P, Cooney JJ (1968) Microbial growth in a fuel-water system containing polyesterurethane foam. Appl Microbiol 16:426–427PubMedPubMedCentralGoogle Scholar
  28. Fagerström R, Vainio A, Suoranta K, Pakula T, Kalkkinen N, Torkkeli H (1990) Comparison of two glucoamylases from Hormoconis resinae. J Gen Microbiol 136:913–920CrossRefPubMedGoogle Scholar
  29. Fujii K, Sugimura T, Nakatake K (2010) Ascomycetes with cellulolytic, amylolytic, pectinolytic, and mannanolytic activities inhabiting dead beech (Fagus crenata) trees. Folia Microbiol 55:29–34CrossRefGoogle Scholar
  30. Gaylarde CC (1990) Advances in detection of microbiologically induced corrosion. Int Biodeterior 26:11–22CrossRefGoogle Scholar
  31. Gaylarde CC, Bento FM, Kelley JK (1999) Microbial contamination of stored hydrocarbon fuels and its control. Rev Microbiol 30:1–10CrossRefGoogle Scholar
  32. Goma G, Pareilleux A, Durand G (1973) Specific hydrocarbon solubilization during growth of Candida lipolytica. J Ferment Technol 51:616–618Google Scholar
  33. Goswami P, Cooney JJ (1999) Subcellular location of enzymes involved in oxidation of n-alkane by Cladosporium resinae. Appl Microbiol Biotechnol 51:860–864CrossRefGoogle Scholar
  34. Goto S, Yamakawa Y, Yokotsuka I (1975) Classification of fragrant odor producing Cladosporium: studies on fragrant odor producing microorganisms I. J Agric Chem Soc Jpn 49:377–381Google Scholar
  35. Guiamet P, Gaylarde CC (1996) Activity of an isothiazolone biocide against Hormoconis resinae in pure and mixed biofilms. World J Microbiol Biotechnol 12:395–397CrossRefPubMedGoogle Scholar
  36. Hendey NI (1964) Some observations on Cladosporium resinae as a fuel contaminant and its possible role in the corrosion of aluminium alloy fuel tanks. Trans Br Mycol Soc 47:467–475CrossRefGoogle Scholar
  37. Hettige GEG, Sheridan JE (1984) Mycoflora of stored diesel fuel in New Zealand. Int Biodeter Bull 20:225–228Google Scholar
  38. Hettige GEG, Sheridan JE (1989) Interactions of Fungi contaminating diesel fuel. Int Biodeterior 25:299–309CrossRefGoogle Scholar
  39. Itah AY, Brooks AA, Oga BO, Okure AB (2009) Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems. Bull Environ Contam Toxicol 83:318–327CrossRefPubMedGoogle Scholar
  40. Joutsjoki VV, Torkkeli TK (1992) Glucoamylase P gene of Hormoconis resinae: molecular cloning sequencing and introduction into Trichoderma reesei. FEMS Microbiol Lett 99:237–244CrossRefGoogle Scholar
  41. Kerry E (1990) Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination, in the Vestfold hills and MacRobertson Land, Antarctica. Polar Biol 10:423–430Google Scholar
  42. Kirk PM (2017) Species Fungorum (version Jan 2016). In: Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, De Walt RE, Decock W, De Wever A, Van Nieukerken E, Zarucchi J, Penev L (eds) Species 2000 & ITIS Catalogue of Life, 26th July 2017. Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden. ISSN 2405-8858
  43. Lindau G (1906) Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz. Zweite Auflage. Erster Band: Die Pilze Deutschlands, Österreichs und der Schweiz. VIII. Abteilung: Fungi imperfecti: Hyphomycetes (erste Hälfte). Lief 102:641–704Google Scholar
  44. Lindau G (1907) Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Oesterreich and der Schweiz, ed. 2. – Die Pilze 8. Lief 95:177–256Google Scholar
  45. Lindley ND (1995) Bioconversion and biodegradation of aliphatic hydrocarbons. Can J Bot 73:1034–1042CrossRefGoogle Scholar
  46. Lindley ND, Heydeman MT (1983) Uptake of vapour phase [14C]Dodecane by whole mycelia of Cladosporium resinae. J Gen Microbiol 129:2301–2305Google Scholar
  47. Lindley ND, Heydeman MT (1985) Alkane utilisation by Cladosporium resinae: the importance of extended lag phases when assessing substrate optima. FEMS Microbiol Ecol 31:307–310CrossRefGoogle Scholar
  48. Lindley ND, Heydeman MT (1986a) The uptake of n-alkanes from alkane mixtures during growth of the hydrocarbon-utilizing fungus Cladosporium resinae. Appl Microbiol Biotechnol 23:384–388CrossRefGoogle Scholar
  49. Lindley ND, Heydeman MT (1986b) Mechanism of dodecane uptake by whole cells of Cladosporium resinae. J Gen Microbiol 132:751–756Google Scholar
  50. Lopes PTC, Gaylarde CC (1996) Use of immunofluorescence to detect Hormoconis resinae in aviation kerosine. Int Biodeter Biodegr 37:37–40CrossRefGoogle Scholar
  51. Lopez SE, Bertoni MD, Cabral D (1990) Fungal decay in creosote-treated Eucalyptus power transmission poles. 1. Survey of the flora. Mat Org 25:287–293Google Scholar
  52. Marsden DM (1954) Studies of the creosote fungus Hormodendron resinae. Mycologia 46:161–183CrossRefGoogle Scholar
  53. Martin-Sanchez PM, Gorbushina AA, Kunt HJ, Toepel J (2016) A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae. Biofouling 32:635–644CrossRefPubMedGoogle Scholar
  54. May ME, Neihof RA (1979) Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. I. Exploratory experiments. Naval Research Laboratory Report 4060. ADA073 761Google Scholar
  55. McCleary BV, Anderson MA (1980) Hydrolysis of alpha-D-glucans and alpha-D-gluco-oligosaccharides by Cladosporium resinae glucoamylases. Carbohydr Res 86:77–96CrossRefPubMedGoogle Scholar
  56. Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM 62:45–48CrossRefGoogle Scholar
  57. Nicot J, Zakartchenko V (1966) Remarques sur la morphologie et la biologie du Cladosporium resinae (Lindau) de Vries. Rev Mycol 31:48–74Google Scholar
  58. Parbery DG (1968) The soil as a natural source of Cladosporium resinae. In: Walters AW, Elphick JJ (eds) Biodeterioration of materials: microbiological and allied aspects. London, ElsevierGoogle Scholar
  59. Parbery DG (1969a) Amorphotheca resinae gen. nov., sp. nov.: The perfect state of Cladosporium resinae. Aust J Bot 17:331–357CrossRefGoogle Scholar
  60. Parbery DG (1969b) Isolation of the kerosene fungus, Cladosporium resinae, from Australian soil. Trans Br Mycol Soc 50:682–685Google Scholar
  61. Parbery DG (1969c) The natural occurrence of Cladosporium resinae. Trans Br Mycol Soc 53:15–23CrossRefGoogle Scholar
  62. Parbery DG (1970) The kerosene fungus, Amorphotheca resinae; its biology, taxonomy and control. Ph.D. Thesis, University of MelbourneGoogle Scholar
  63. Parbery DG (1971) Biological problems in jet aviation fuel and the biology of Amorphotheca resinae. Mater Org 6:161–208Google Scholar
  64. Passman FJ (2013) Microbial contamination and its control in fuels and fuel systems since 1980: a review. Int Biodeter Biodegr 81:88–104CrossRefGoogle Scholar
  65. Rabaev M, Shapira D, Geva J, Fass R, Sivan A (2009) Effect of the fuel system icing inhibitor diethylene glycol monomethyl ether on the biodegradation of jet fuel in soil. Int Biodeter Biodegr 63:311–315CrossRefGoogle Scholar
  66. Ribichich K, Lopez S (1996) In vitro interactions among species related to soft rot. Mater Org 30:231–236Google Scholar
  67. Rubidge T (1974) A new selective medium for the screening of aircraft fuels for biodeteriogenic fungi. Int Biodeterior Bull 10:53–55Google Scholar
  68. Rubidge T (1975) Inadequacy of a strontium chromate formulation for control of fungal growth in a kerosene/water system. Int Biodeterior Bull 11:133–135Google Scholar
  69. San-Blas G, Guanipa O, Moreno B, Pekerar S, San-Blas F (1996) Cladosporium carrionii and Hormoconis resinae (C. resinae): cell Wall and melanin studies. Curr Microbiol 32:11–16CrossRefPubMedGoogle Scholar
  70. Seifert KA, Hughes SJ, Boulay H, Louis-Seize G (2007) Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae. Stud Mycol 58:235–245CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sheridan JE, Nelson J, Tan YL (1972) Studies on the kerosene fungus Cladosporium resinae (Lindau) De Vries Part II. The natural habitat of C. resinae. Tuatara 19:70–96Google Scholar
  72. Siporin C, Cooney JJ (1976) Inhibition of glucose metabolism by n-hexadecane in Cladosporium (Amorphotheca) resinae. J Bacteriol 128:235–241PubMedPubMedCentralGoogle Scholar
  73. Smucker RA, Cooney JJ (1981) Cytological responses of Cladosporium resinae when shifted from glucose to hydrocarbon medium. Can J Microbiol 27:1209–1218CrossRefGoogle Scholar
  74. Teh JS, Lee KH (1973) Utilization of n-alkanes by Cladosporium resinae. App Microbiol 25:454–457Google Scholar
  75. Tugay TI, Zhdanova NN, Zheltonozhsky VA, Sadovnikov LV, Dighton J (2006) The influence of ionizing radiation on spore germination and emergent hyphal growth response reactions of microfungi. Mycologia 98:521–527CrossRefPubMedGoogle Scholar
  76. Tugay TI, Zhdanova NN, Zheltonozhskiy VA, Sadovnikov LV (2007) Development of radioadaptive properties for microscopic fungi, long time located on terrains with a heightened background radiation after emergency on Chernobyl NPP. Radiats Biol Radioecol 47:543–549Google Scholar
  77. Turner APF, Higgins IJ, Gull K (1980) Microbodies in Cladosporium (Amorphotheca) resinae grown on glucose and n-alkanes. FEMS Microbiol Lett 9:115–119CrossRefGoogle Scholar
  78. Vainio AE, Torkkeli HT, Tuusa T, Aho SA, Fagerström BR, Korhola MP (1993) Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae. Curr Genet 24:38–44CrossRefPubMedGoogle Scholar
  79. von Arx JA (1973) Centraalbureau voor Schimmelcultures, Progress Report 1972. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen Afdeling Natuurkunde 61:59–81Google Scholar
  80. Walker JD, Cooney JJ (1973) Pathway of n-alkane oxidation in Cladosporium resinae. J Bacteriol 115:635–639Google Scholar
  81. Wang CJK, Zabel RA (1990) Identification manual for fungi from utility poles in the eastern United States. American Type Culture Collection, Rockville, 356 pagesGoogle Scholar
  82. Wang X, Gao Q, Bao J (2015) Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment. Biotechnol Biofuels 8:1–13CrossRefGoogle Scholar
  83. Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol production. Biotechnol Biofuels 3:1–15CrossRefGoogle Scholar
  84. Zhdanova NN, Tugay T, Dighton J, Zheltonozhsky V, McDermott P (2004) Ionizing radiation attracts soil fungi. Mycol Res 108:1089–1096CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Unité de Chimie Environnementale et Interactions sur le Vivant UCEIV EA 4492Université du Littoral Côte d’Opale (ULCO)DunkirkFrance

Personalised recommendations