Anaerobic Hydrocarbon-Degrading Deltaproteobacteria

  • Irene A. Davidova
  • Christopher R. Marks
  • Joseph M. SuflitaEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Despite being a remarkably biodiverse taxon, the class Deltaproteobacteria includes relatively few model hydrocarbonoclastic isolates. These organisms as well as notable enrichment cultures containing Deltaproteobacteria are able to anaerobically metabolize a wide variety of normal, iso-, and cyclic alkanes, as well as mono- and polycyclic aromatic hydrocarbons. The isolates are mostly recovered from marine environments and can readily couple the metabolism of their parent substrate with the consumption of sulfate as a terminal electron acceptor. As a consequence, the organisms reduce sulfate (and often other sulfur oxyanions) to sulfide. Fe(III) can also serve as electron acceptor for the biodegradation of aromatic compounds, and alkynes can be fermented by Pelobacter strains. In the absence of a respiratory electron acceptor, the hydrocarbonoclastic Deltaproteobacteria can participate as members of syntrophic consortia that transfer reducing equivalents ultimately to methanogenic Archaea. Under the latter circumstances, the major consequence is the transformation of parent hydrocarbons to the stoichiometrically expected quantity of methane. The mechanism of hydrocarbon activation by Deltaproteobacteria is fundamentally different from hydrocarbonoclastic aerobes in that molecular oxygen is not a co-reactant. Rather, there are at least four biochemical strategies governing the primary attack on parent substrates. Identification of some functional genes has allowed for the detection and greater appreciation for the diversity of anaerobes capable of hydrocarbon metabolism. Despite the recognition that such organisms reside in varied environments, most cultivated representatives reflect rather limited environmental tolerance ranges. Given the importance of hydrocarbonoclastic Deltaproteobacteria in the biogeochemical cycling of carbon, the biocorrosion of steel, and prospects for methane recovery, studies on the full metabolic diversity inherent in this group of organisms seem particularly warranted.


  1. Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796PubMedGoogle Scholar
  2. Abu Laban N, Dao A, Semple K, Foght J (2015a) Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions. Environ Microbiol 17:4898–4915CrossRefPubMedGoogle Scholar
  3. Abu Laban N, Tan B, Dao A, Foght J (2015b) Draft genome sequence of uncultivated toluene-degrading Desulfobulbaceae bacterium Tol-SR, obtained by stable isotope probing using [13C6]toluene. Genome Announc 3:e01423–e01414PubMedPubMedCentralGoogle Scholar
  4. Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14CrossRefGoogle Scholar
  5. Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369CrossRefPubMedGoogle Scholar
  6. Akob DM, Baesman SM, Sutton JM, Fierst JL, Mumford AC, Shrestha Y, Poret-Peterson AT, Bennett S, Dunlap DS, Haase KB, Oremland RS (2017) Detection of diazotrophy in the acetylene-fermenting anaerobe, Pelobacter strain SFB93. Appl Environ Microbiol 83:e01198–e01117CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anderson RT, Lovley DR (2000) Hexadecane decay by methanogenesis. Nature 404:722–723CrossRefPubMedGoogle Scholar
  8. Anderson RT, Rooney-Varga JN, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. Environ Sci Technol 32:1222–1229CrossRefGoogle Scholar
  9. Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU (2000) Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:5329–5333CrossRefPubMedPubMedCentralGoogle Scholar
  10. Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68:852–858CrossRefPubMedPubMedCentralGoogle Scholar
  11. Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch Microbiol 117:209–214CrossRefPubMedGoogle Scholar
  12. Beller HR, Spormann AM (1997) Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOL1. Appl Environ Microbiol 63:3729–3731PubMedPubMedCentralGoogle Scholar
  13. Beller HR, Spormann AM, Sharma PK, Cole JR, Reinhard M (1996) Isolation and characterization of a novel toluene-degrading sulfate-reducing bacterium. Appl Environ Microbiol 62:1188–1196PubMedPubMedCentralGoogle Scholar
  14. Beller HR, Kane SR, Legler TC, Alvarez PJJ (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36:3977–3984CrossRefPubMedGoogle Scholar
  15. Berdugo-Clavijo C, Gieg LM (2014) Conversion of crude oil to methane by microbial consortium enriched from oil reservoir production waters. Front Microbiol 5:197CrossRefPubMedPubMedCentralGoogle Scholar
  16. Berdugo-Clavijo C, Dong X, Soh J, Sensen CW, Gieg LM (2012) Methanogenic biodegradation of two-ring polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 81:124–133CrossRefPubMedGoogle Scholar
  17. Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU (2011) Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 13:1125–1137CrossRefPubMedGoogle Scholar
  18. Botton S, Harmelen MV, Braster M, Parsons JR, Röling WFM (2007) Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. FEMS Microbiology Ecology 62:118–130Google Scholar
  19. Brahmkshatriya PP, Brahmkshatriya PS (2013) Terpenes: chemistry, biological role, and therapeutic applications. In: Ramawat KG, Mérillon J-M (eds) Natural products. Springer, Berlin/Heidelberg, pp 2665–2691. Scholar
  20. Callaghan AV (2013) Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol 4:89Google Scholar
  21. Callaghan AV, Wawrik B (2016) AnHyDeg: a curated database of anaerobic hydrocarbon degradation genes. AnHyDeg Public Release (Version v1.0). Zenodo.
  22. Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 72:4274–4282CrossRefPubMedPubMedCentralGoogle Scholar
  23. Callaghan AV, Wawrik B, Ní Chadhain SM, Young LY, Zylstra GJ (2008a) Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 366:142–148CrossRefPubMedGoogle Scholar
  24. Callaghan AV, Austin RN, Groves JT, Kukor JJ, Rabus R, Widdel F, Young LY, Zylstra GJ, Wawrik B (2008b) The complete genome sequence of Desulfococcus oleovorans Hxd3, a sulfate-reducing, alkane-degrading bacterium. In: Abstracts American Society Microbiology 108th general meeting, Boston. Q-512Google Scholar
  25. Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B (2010) Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44:7287–7294CrossRefPubMedGoogle Scholar
  26. Callaghan AV, Morris BEL, Pereira IAC, McInerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B (2012) The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 14:101–113CrossRefPubMedGoogle Scholar
  27. Cheng L, He Q, Ding C, Dai L, Li Q, Zhang H (2013) Enrichment and dynamics of novel syntrophs in a methanogenic hexadecane-degrading culture from a Chinese oil field. FEMS Microbiol Ecol 83:568–577CrossRefGoogle Scholar
  28. Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767CrossRefPubMedGoogle Scholar
  29. Coates JD, Bhupathiraju V, Achenbach LA, McInerney MJ, Lovley DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:757–766CrossRefGoogle Scholar
  30. Cravo-Laureau C, Matheron R, Cayol J-L, Joulian C, Hirschler-Réa A (2004a) Desulfatibacillum aliphaticivorans gen. nov. sp. nov. an n-alkane and n-alkene-degrading sulfate-reducing bacterium. Int J Syst Evol Microbiol 54:77–83Google Scholar
  31. Cravo-Laureau C, Matheron R, Joulian C, Cayol J-L, Hirschler-Réa A (2004b) Desulfatibacillum alkenivorans sp. nov. a novel n-alkene-degrading, sulfate-reducing bacterium, and emended description of the genus Desulfatibacillum. Int J Syst Evol Microbiol 54:1639–1642Google Scholar
  32. Cravo-Laureau C, Grossi V, Raphel D, Matheron R, Hirschler-Réa A (2005) Anaerobic n-alkane metabolism by a sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain 2803T. Appl Environ Microbiol 71:3458–3467CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cravo-Laureau C, Labat C, Joulian C, Matheron R, Hirschler-Réa A (2007) Desulfatiferula olefinivorans gen. nov sp. nov a long-chain n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 57:2699–2702CrossRefPubMedGoogle Scholar
  34. Culbertson CW, Zehnder AJB, Oremland RS (1981) Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. Appl Environ Microbiol 41:396–403PubMedPubMedCentralGoogle Scholar
  35. Davidova I, Suflita J (2005) Enrichment and isolation of anaerobic hydrocarbon-degrading bacteria. In: Leadbetter J (ed) Methods in enzymology, vol 397. Elsevier, Amsterdam, pp 17–34Google Scholar
  36. Davidova IA, Duncan KE, Choi OK, Suflita JM (2006) Desulfoglaeba alkanexedens gen. nov. sp. nov. an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742Google Scholar
  37. Davidova IA, Gieg LM, Duncan KE, Suflita JM, (2007) Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. The ISME Journal 1(5):436–442Google Scholar
  38. DiDonato RJ, Young ND, Butler JE, Chin K-J, Hixson KK, Mouser P, Lipton MS, DeBoy R, Methé BA (2010) Genome sequence of the deltaproteobacterial strain naphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLoS One 5:e14072Google Scholar
  39. Elshahed MS, Gieg LM, McInerney MJ, Suflita JM (2001) Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol 35:682–689CrossRefPubMedGoogle Scholar
  40. Embree M, Nagarajan H, Movahedi N, Chitsaz H, Zengler K (2014) Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME J 8:757–767CrossRefPubMedGoogle Scholar
  41. Embree M, Liu JK, Al-Bassam MM, Zengler K (2015) Networks of energetic and metabolic interactions define dynamics in microbial communities. PNAS 112:15450–15455CrossRefPubMedGoogle Scholar
  42. Estevez-Canales M, Kuzume A, Borjas Z, Fueg M, Lovley D, Wandlowski T, Esteve-Nunez A (2015) A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer. Environ Microbiol Rep 7:219–226CrossRefPubMedGoogle Scholar
  43. Funk MA, Judd ET, Marsh ENG, Elliott SJ, Drennan CL (2014) Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity. PNAS 111:10161–10166CrossRefPubMedGoogle Scholar
  44. Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799CrossRefPubMedGoogle Scholar
  45. Galushko AS, Rozanova EP (1995) Desulfobacterium cetonicum sp. nov.: a sulfate-reducing bacterium which oxidizes fatty acids and ketones. Microbiologica 60:742–746Google Scholar
  46. Galushko A, Minz D, Schink B, Widdel F (1999) Anaerobic degradation of naphthalene by pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1:415–420CrossRefPubMedGoogle Scholar
  47. Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gieg LM, Fowler SJ, Berdugo-Clavijo C (2014) Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol 27:21–29CrossRefPubMedGoogle Scholar
  49. Gray ND, Sherry A, Hubert C, Dolfing J, Head IM (2010) Methanogenic degradation of petroleum hydrocarbons in subsurface environments: remediation, heavy oil formation, and energy recovery. Adv Appl Microbiol 72:137–161CrossRefPubMedGoogle Scholar
  50. Gray ND, Sherry A, Grant RJ, Rowan AK, Hubert CR, Callbeck CM, Aitken CM, Jones DM, Adams JJ, Larter SR, Head IM (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13:2957–2975CrossRefPubMedPubMedCentralGoogle Scholar
  51. Grbić-Galić D, Vogel T (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260PubMedPubMedCentralGoogle Scholar
  52. Grossi V, Cravo-Laureau C, Méou A, Raphel D, Garzino F, Hirschler-Réa A (2007) Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T. Appl Environ Microbiol 73:7882–7890Google Scholar
  53. Grossi V, Cravo-Laureau C, Rontani J-F, Cros M, Hirschler-Rea A (2011) Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites. Res Microbiol 162:915–922CrossRefPubMedGoogle Scholar
  54. Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10:376–385Google Scholar
  55. Hakil F, Amin-Ali O, Hirschler-Réa A, Mollex D, Grossi V, Duran R, Matheron R, Cravo-Laureau C (2014) Desulfatiferula berrensis sp. nov. a n-alkene degrading sulfate-reducing bacterium isolated from estuarine sediments. Int J Syst Evol Microbiol 64:540–544Google Scholar
  56. Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004PubMedPubMedCentralGoogle Scholar
  57. Heider J, Szaleniec M, Sunwoldt K, Boll M (2016a) Ethylbenzene dehydrogenase and related molybdenum enzymes involded in oxygen-independent alkyl chain hydroxylation. J Mol Microbiol Biotechnol 26:45–62CrossRefPubMedGoogle Scholar
  58. Heider J, Szaleniec M, Martins BM, Seyhan D, Buckel W, Golding BT (2016b) Structure and function of benzylsuccinate synthase and related fumarate-adding glycyl radical enzymes. J Mol Microbiol Biotechnol 26:29–44CrossRefPubMedGoogle Scholar
  59. Herath A, Wawrik B, Qin Y, Zhou J, Callaghan AV (2016) Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses. FEMS Microbiol Ecol 92:4898–4915CrossRefGoogle Scholar
  60. Higashioka Y, Kojima H, Nakagawa T, Fukui M (2009) A novel n-alkane degrading bacterium as a minor member of p-xylene-degrading sulfate-reducing consortium. Biodegradation 20:383–390CrossRefPubMedGoogle Scholar
  61. Higashioka Y, Kojima H, Fukui M (2010) Temperature-dependent differences in community structure of bacteria involved in degradation of petroleum hydrocarbons under sulfate-reducing conditions. J Appl Microbiol 110:314–322CrossRefPubMedGoogle Scholar
  62. Higashioka Y, Kojima H, Fukui M (2012) Isolation and characterization of novel sulfate-reducing bacterium capable of anaerobic degradation of p-xylene. Microbes Environ 27:273–277Google Scholar
  63. Holmes DE, Nevin KP, Lovley DR (2004) In situ expression of nifD in Geobacteraceae in subsurface sediments. Appl Environ Microbiol 70:7251–7259Google Scholar
  64. Holmes DE, Dang Y, Walker DJ, Lovley DR (2016) The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb Genomics 2:e000072CrossRefGoogle Scholar
  65. Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7:885–895Google Scholar
  66. James KL, Ríos-Hernández LA, Wofford NQ, Mouttaki H, Sieber JR, Sheik CS, Nguyen HH, Yang Y, Xie Y, Erde J, Rohlin L, Karr EA, Loo JA, Ogorzalek Loo RR, Hurst GB, Gunsalus RP, Szweda LI, McInerney MJ (2016) Pyrophosphate-dependent ATP formation from acetyl coenzyme A in Syntrophus aciditrophicus, a new twist on ATP formation. mBio 7(4):e01208–e01216Google Scholar
  67. Jarling R, Kühner S, Basílio Janke E, Gruner A, Drozdowska M, Golding BT, Rabus R, Wilkes H (2015) Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions. Front Microbiol 6:880CrossRefPubMedPubMedCentralGoogle Scholar
  68. Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183:4536–4542CrossRefPubMedPubMedCentralGoogle Scholar
  69. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180CrossRefPubMedGoogle Scholar
  70. Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333CrossRefPubMedPubMedCentralGoogle Scholar
  71. Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J, Peplies J, Amann R, Musat F, Lueders T, Knittel K (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kneimeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768CrossRefGoogle Scholar
  73. Kneimeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye S, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901CrossRefGoogle Scholar
  74. Knittel K, Wegener G, Boetius A (2018) Anaerobic methane oxidizers. In: McGenity TJ (ed) Handbook of hydrocarbon and lipid microbiology: microbial communities utilizing hydrocarbons and lipids. Springer. Cham.
  75. Kropp KG, Davidova IA, Suflita JM (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66:5393–5398CrossRefPubMedPubMedCentralGoogle Scholar
  76. Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, Berg JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G (2016) Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 18:3073–3091CrossRefPubMedGoogle Scholar
  77. Kuever J, Rainey FA, Widdel F (2005a) Genus III Desulfothermus, gen. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergeys mannual of systematic bacteriology, 2nd edn, vol 2 (The Proteobacteria), Part C. Springer, New York, pp 955–956Google Scholar
  78. Kuever J, Rainey FA, Widdel F (2005b) Genus X. Desulfosarcina Widdel 1981, 382 VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergeys mannual of systematic bacteriology, 2nd edn, vol 2 (The Proteobacteria), Part C. Springer, New York, pp 981–984Google Scholar
  79. Kümmel S, Herbst F-A, Bahr A, Duarte M, Pieper DH, Jehmlich N, Seifert J, von Bergen M, Bombach P, Richnow HH, Vogt C (2015) Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microb Ecol 91:fiv006CrossRefGoogle Scholar
  80. Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper J, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov. iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 60:686–695Google Scholar
  81. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier D, Richter M, Tegetmeyer H, Riedel D, Richnow HH, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F (2016) Thermophilic Archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401CrossRefPubMedGoogle Scholar
  82. Leuthner B, Leutwein C, Schulz H, Horth P, Haehnel W, Schiltz E, Schagger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Molecular Microbiology 28:615–628Google Scholar
  83. Li L, Patterson DP, Fox CC, Lin B, Coschigano PW, Marsh ENG (2009) Subunit structure of benzylsuccinate synthase. Biochemist 48:1284–1292CrossRefGoogle Scholar
  84. Liang B, Wang L-Y, Zhou Z, Mbadinga SM, Zhou L, Liu J-F, Yang S-Z, Gu J-D, Mu B-Z (2016) High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkane-degrading methanogenic enrichment culture. Front Microbiol 7:1431PubMedPubMedCentralGoogle Scholar
  85. Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864PubMedPubMedCentralGoogle Scholar
  86. Lovley DR, Malvankar NS (2015) Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function. Environ Microbiol 17:2209–2215CrossRefPubMedGoogle Scholar
  87. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480PubMedPubMedCentralGoogle Scholar
  88. Luo F, Devine CE, Edwards EA (2016) Cultivating microbial dark matter in benzene-degrading methanogenic consortia. Environmental Microbiology 18(9):2923–2936Google Scholar
  89. Malvankar NS, Tuominen MT, Lovley DR (2012) Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens. Energy Environ Sci 5:8651–8659CrossRefGoogle Scholar
  90. Malvankar NS, Vargas M, Nevin K, Tremblay P-L, Evans-Lutterodt K, Nykypanchuk D et al (2015) Structural basis for metallic-like conductivity in microbial nanowires. MBio 6:e00084–e00015CrossRefPubMedPubMedCentralGoogle Scholar
  91. Mao X, Oremland RS, Liu T, Gushgari S, Landers AA, Baesman SM, Alvarez-Cohen L (2017) Acetylene fuels TCE reductive dechlorination by defined Dehalococcoides/Pelobacter consortia. Environ Sci Technol 51:2366–2372CrossRefPubMedPubMedCentralGoogle Scholar
  92. Marmulla R, Harder J (2014) Microbial monoterpene transformations-a review. Front Microbiol 5:346CrossRefPubMedPubMedCentralGoogle Scholar
  93. Mbadinga SM, Li K-P, Zhou L, Wang L-Y, Yang S-Z, Liu J-F, Gu J-D, Mu B-Z (2012) Analysis of alkane-dependent methanogenic community derived from production water of a high temperature petroleum reservoir. Appl Microbiol Biotechnol 96:531–542CrossRefPubMedGoogle Scholar
  94. McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus R (2008) Physiology, ecology, phylogeny and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72CrossRefPubMedGoogle Scholar
  95. Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic conditions. FEMS Microbiol Lett 177:67–73CrossRefPubMedGoogle Scholar
  96. Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414CrossRefPubMedGoogle Scholar
  97. Meckenstock RU, Krieger R, Ensign S, Kroneck PMH, Schink B (1999) Acetylene hydratase of Pelobacter acetylenicus. Eur J Biochem 264:176–182CrossRefPubMedGoogle Scholar
  98. Meckenstock RU, Warthmann RJ, Schäfer W (2004) Inhibition of anaerobic microbial o-xylene degradation by toluene in sulfidogenic sediment column and pure cultures. FEMS Microb Ecol 47:381–386CrossRefGoogle Scholar
  99. Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic Naphthalene Degradation by a Sulfate-Reducing Enrichment Culture. Applied and Environmental Microbiology 66(7):2743–2747Google Scholar
  100. Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118CrossRefPubMedGoogle Scholar
  101. Miller LG, Baesman SM, Kirshtein J, Voytek MA, Oremland RS (2013) A biogeochemical and genetic survey of acetylene fermentation by environmental samples and bacterial isolates. Geomicrobiol J 30:501–516CrossRefGoogle Scholar
  102. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI, Truper HG, Murray RGE, Wayne LG, Grimont PAD, Brenner DJ, Starr MP, Moore LH (1987) Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. International Journal of Systematic and Evolutionary Microbiology 37(4):463–464Google Scholar
  103. Mouttaki H, Johannes J, Meckenstock RU (2012) Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 14:2770–2774CrossRefPubMedGoogle Scholar
  104. Musat F, Widdel F (2008) Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of a dominant phylotype. Environ Microbiol 10:10–19PubMedGoogle Scholar
  105. Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219CrossRefPubMedGoogle Scholar
  106. Myhr S, Lillebo BLP, Sunde E, Beeder J, Torsvik T (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408CrossRefPubMedGoogle Scholar
  107. Nakagawa T, Sato S, Fukui M (2008) Anaerobic degradation of p-xylene in sediment free sulfate-reducing enrichment culture. Biodegradation 19:909–913CrossRefPubMedGoogle Scholar
  108. Nelson MB, Martiny AC, Martiny JB (2016) Global biogeography of microbial nitrogen-cycling traits in soil. PNAS 113:8033–8040CrossRefPubMedGoogle Scholar
  109. Nevin KP, Lovley DR (2000) Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microbiol 66:2248–2251CrossRefPubMedPubMedCentralGoogle Scholar
  110. Nevin KP, Kim B-C, Glaven RH, Johnson JP, Woodard TL, Methé BA et al (2009) Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 4:e5628CrossRefPubMedPubMedCentralGoogle Scholar
  111. Oka AR, Phelps CD, McGuinness LM, Mumford A, Young LY, Kerkhof LJ (2008) Identification of critical members in sulfidogenic benzene-degrading consortium by DNA stable isotope probing. Appl Environ Microbiol 74:6476–6480CrossRefPubMedPubMedCentralGoogle Scholar
  112. Ommedal H, Torsvik T (2007) Desulfotignum toluenicum sp. nov. a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil reservoir model column. Int J Syst Evol Microbiol 57:2865–2869Google Scholar
  113. Oremland RS, Voytek MA (2008) Acetylene as fast food: implications for development of life on anoxic primordial Earth and in the outer solar system. Astrobiology 8:45–58CrossRefPubMedGoogle Scholar
  114. Phelps CD, Kerkhof LJ, Young LY (1998) Molecular characterization of a sulfate-reducing consortium which mineralize benzene. FEMS Microbiol Ecol 27:269–279CrossRefGoogle Scholar
  115. Prakash O, Gihring TM, Dalton DD, Chin K-J, Green S, Akob DM, Wanger G, Kostka JE (2010) Geobacter daltonii sp. nov. an Fe(III)- and uranium (VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Int J Syst Evol Microbiol 60:546–553Google Scholar
  116. Rabus R, Heider J (1998) Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch Microbiol 170:377–384CrossRefGoogle Scholar
  117. Rabus R, Widdel F (1995) Conversion studies with substrate analogues of toluene in a sulfate-reducing bacterium, strain Tol2. Arch Microbiol 164:448–451Google Scholar
  118. Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451PubMedPubMedCentralGoogle Scholar
  119. Rabus R, Kube M, Beck A, Widdel F, Reinhardt R (2002) Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 178:506–516CrossRefPubMedGoogle Scholar
  120. Rabus R, Jarling R, Lahme S, Kühner S, Heider J, Widdel F, Wilkes H (2011) Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol 13:2576–2586CrossRefPubMedGoogle Scholar
  121. Rabus R, Boll M, Heider J, Meckenstock RU, Buckle W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PM, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28CrossRefPubMedGoogle Scholar
  122. Ragsdale SW (2008) Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136CrossRefPubMedPubMedCentralGoogle Scholar
  123. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098CrossRefPubMedGoogle Scholar
  124. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348CrossRefPubMedPubMedCentralGoogle Scholar
  125. Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum contaminated aquifer. Appl Environ Microbiol 65:3056–3063PubMedPubMedCentralGoogle Scholar
  126. Rosner BM, Schink B (1995) Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein. J Bacteriol 177:5767–5772CrossRefPubMedPubMedCentralGoogle Scholar
  127. Rosselló-Móra R, Amann R (2015) Past and future species definitions for Bacteria and Archaea. Systematic and Applied Microbiology 38(4):209–216Google Scholar
  128. Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458CrossRefPubMedGoogle Scholar
  129. Savage KN, Krumholz LR, Gieg LM, Parisi VA, Suflita JM, Allen J, Philp RP, Elshahed MS (2010) Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns. FEMS Microb Ecol 72:485–495CrossRefGoogle Scholar
  130. Schink B (1985) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301CrossRefGoogle Scholar
  131. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedPubMedCentralGoogle Scholar
  132. Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O (2007) Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. PNAS 104:3073–3077CrossRefPubMedGoogle Scholar
  133. Siddique T, Fedorak PM, Foght JM (2006) Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environ Sci Technol 40:5459–5464CrossRefPubMedGoogle Scholar
  134. Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sand tailings. Environ Sci Technol 45:5892–5899CrossRefPubMedGoogle Scholar
  135. So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976PubMedPubMedCentralGoogle Scholar
  136. So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900CrossRefPubMedPubMedCentralGoogle Scholar
  137. Stagars MH, Ruff SE, Amann R, Knittel K (2016) High diversity of anaerobic alkane-degrading microbial communities in marine seep sediments based on (1-methylalkyl)succinate synthase genes. Front Microbiol 6:1511CrossRefPubMedPubMedCentralGoogle Scholar
  138. Stagars MH, Mishra S, Treude T, Amann R, Knittel K (2017) Microbial community response to simulated petroleum seepage in Caspian Sea sediments. Front Microbiol 8:764CrossRefPubMedPubMedCentralGoogle Scholar
  139. Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66:271–294CrossRefPubMedGoogle Scholar
  140. Stevenson BS, Schmidt TM (2004) Life history implications of rRNA gene copy number in Escherichia coli. Appl Environ Microbiol 70:6670–6677CrossRefPubMedPubMedCentralGoogle Scholar
  141. Strijkstra A, Trautwein K, Jarling R, Wohlbrand L, Dorries M, Reinhardt R, Drozdowska M, Golding BT, Wilkes H, Rabus R (2014) Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol 80:7592–7603CrossRefPubMedPubMedCentralGoogle Scholar
  142. Struchtemeyer CG, Duncan KE, McInerney MJ (2011) Evidence for syntrophic butyrate metabolism under sulfate-reducing conditions in a hydrocarbon-contaminated aquifer. FEMS Microbiol Ecol 76:289–300CrossRefPubMedGoogle Scholar
  143. Sutton JM, Baesman SM, Fierst JL, Poret-Peterson AT, Oremland RS, Dunlap DS, Akob DM (2017a) Complete genome sequence of the acetylene-fermenting Pelobacter sp. strain SFB93. Genome Announc 5:e01573–e01516PubMedPubMedCentralGoogle Scholar
  144. Sutton JM, Baesman SM, Fierst JL, Poret-Peterson AT, Oremland RS, Dunlap DS, Akob DM (2017b) Complete genome sequences of two acetylene-fermenting Pelobacter acetylenicus strains. Genome Announc 5:e01572–e01516PubMedPubMedCentralGoogle Scholar
  145. Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D (2014) Electroactive bacteria – molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98:8481–8495CrossRefPubMedGoogle Scholar
  146. Tan B, Dong X, Sensen CW, Foght JM (2013) Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome 56:599–611CrossRefPubMedGoogle Scholar
  147. Tan B, Nesbø C, Foght J (2014a) Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions. ISME J 8:2353–2356CrossRefPubMedPubMedCentralGoogle Scholar
  148. Tan B, de Araujo ESR, Rozycki T, Nesbø C, Foght J (2014b) Draft genome sequences of three Smithella spp. obtained from a methanogenic alkane-degrading culture and oil field produced water. Genome Announc 2(5):e01085–e01014PubMedPubMedCentralGoogle Scholar
  149. Tan B, Semple K, Foght J (2015) Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition. FEMS Microbiology Ecology 91(5)Google Scholar
  150. Tan Y, Adhikari RY, Malvankar NS, Ward JE, Woodard TL, Nevin KP, Lovley DR (2017) Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity. MBio 8:e02203–e02216Google Scholar
  151. tenBrink F, Schink B, Kroneck PMH (2011) Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase. J Bacteriol 193:1229–1236CrossRefPubMedGoogle Scholar
  152. Townsend TG, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37:5213–5218CrossRefPubMedGoogle Scholar
  153. Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D (2012) A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ Microbiol Rep 4:82–88CrossRefPubMedGoogle Scholar
  154. Ulrich AC, Edwards E (2003) Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environ Microbiol 5:92–102CrossRefPubMedGoogle Scholar
  155. Vargas M, Malvankar NS, Tremblay P-L, Leang C, Smith JA, Patel P et al (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4:e00105–e00113CrossRefPubMedPubMedCentralGoogle Scholar
  156. Varghese NH, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Research 43(14):6761–6771Google Scholar
  157. Von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552CrossRefGoogle Scholar
  158. von Netzer F, Kuntze K, Vogt C, Richnow HH, Boll M, Lueders T (2016) Functional gene markers for fumarate-adding and dearomatizing key enzymes in anaerobic aromatic hydrocarbon degradation in terrestrial environments. J Mol Microbiol Biotechnol 26:180–194CrossRefGoogle Scholar
  159. Watanabe M, Higashioka Y, Kojima H, Fukui M (2017) Desulfosarcina widdelii sp. nov. and Desulfosarcina alkanivorans sp. nov. hydrocarbon-degrading sulfate-reducing bacteria isolated from marine sediments and emended description of the genus Desulfosarcina. Int J Syst Evol Microbiol 67:2994–2997Google Scholar
  160. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. International Journal Of Systematic Bacteriology. 37(4):463–464.Google Scholar
  161. Wawrik B, Marks CR, Davidova IA, McInerney MJ, Pruitt S, Duncan KE, Suflita JM, Callaghan AV (2016) Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ‘Smithella’ spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 18:2604–2619CrossRefPubMedGoogle Scholar
  162. Webner K (2012) Die Gene der (1-Methylalkyl)succinat-Synthase im anaeroben n-Alkanabbau des Betaproteobakteriums Stamm HxN1. PhD thesis, University of Bremen, BremenGoogle Scholar
  163. Whitman WB (2015) Genome sequences as the type material for taxonomic descriptions of prokaryotes. Systematic and Applied Microbiology 38(4):217–222Google Scholar
  164. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276CrossRefPubMedGoogle Scholar
  165. Widdel F, Boetius A, Rabus R (2006) Anaerobic biodegradation of hydrocarbons including methane. PRO 2:1028–1049Google Scholar
  166. Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151CrossRefPubMedGoogle Scholar
  167. Winderl C, Schaefer S, Lueders T (2007) Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 9:1035–1046Google Scholar
  168. Wöhlbrand L, Jacob JH, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R (2013) Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading sulfate-reducing bacterium. Environ Microbiol 15:1334–1355CrossRefPubMedGoogle Scholar
  169. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269CrossRefPubMedGoogle Scholar
  170. Zhang T, Bain TS, Nevin KP, Barlett MA, Lovley DR (2012) Anaerobic benzene oxidation by Geobacter species. Appl Environ Microbiol 78:8304–8310CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Irene A. Davidova
    • 1
  • Christopher R. Marks
    • 2
  • Joseph M. Suflita
    • 1
    Email author
  1. 1.Department of Microbiology and Plant Biology, Institute for Energy and the EnvironmentUniversity of OklahomaNormanUSA
  2. 2.Groundwater, Watershed, and Ecosystem Restoration DivisionUS Environmental Protection Agency, Office of Research and Development, National Risk Management Research LaboratoryAdaUSA

Personalised recommendations