Advertisement

Which Environmental Factors Drive Distribution of Orchids? A Case Study from South Bohemia, Czech Republic

  • Zuzana ŠtípkováEmail author
  • Dušan Romportl
  • Pavel Kindlmann
Living reference work entry
  • 10 Downloads
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Species distribution models are a useful tool applied in many branches of biology, especially when dealing with threatened organisms. In combination with GIS techniques, these models are especially important and valuable for predicting occurrence of rare species, for example, orchids. Orchids are an endangered plant group, protected in the whole world. Questions of their conservation are therefore highly discussed, but not all factors affecting their survival and distribution are known so far. Here we show an example of using SDMs for analysis of orchid species occurrence data from the region of South Bohemia in the Czech Republic. Our data were analyzed using the MaxEnt program, which produces species distribution maps and thus allows predicting potential occurrence of orchids in yet unknown localities. This program also determines the environmental factors affecting species distribution. This is important for better protection of orchids, because we can improve management plans that are crucial for maintaining orchid localities to stay alive. We determined the most important factors affecting studied species occurrence and areas, where new sites are most likely to be discovered. This approach can help us to find new localities of orchids and to understand which environmental factors influence the occurrence of these endangered plants.

Keywords

Orchids Distribution Environmental variables Species distribution models MaxEnt 

Notes

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), grant number LO1415. We also thank the South Bohemian Branch of the Land Office in Ceske Budejovice for their kind cooperation and Kristina Kosánová for her help in the field.

References

  1. 1.
    Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167.  https://doi.org/10.1146/annurev.energy.28.050302.105532CrossRefGoogle Scholar
  2. 2.
    Possingham HP, Wilson KA (2005) Biodiversity – turning up the heat on hotspots. Nature 436:919–920.  https://doi.org/10.1038/436919aCrossRefPubMedGoogle Scholar
  3. 3.
    Tsiftsis S, Tsiripidis I, Trigas R (2011) Identifying important areas for orchid conservation in Crete. Eur J Environ Sci 1(2):28–37Google Scholar
  4. 4.
    Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253.  https://doi.org/10.1038/35012251CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gaston KJ, Pressey RL, Margules CR (2002) Persistence and vulnerability: retaining biodiversity in the landscape and in protected areas. J Biosci 27:361–384.  https://doi.org/10.1007/BF02704966CrossRefPubMedGoogle Scholar
  6. 6.
    Williams PH, Margules CR, Hilbert DW (2002) Data requirements and data sources for biodiversity priority area selection. J Biosci 27:327–338.  https://doi.org/10.1007/BF02704963CrossRefPubMedGoogle Scholar
  7. 7.
    Heywood VH, Iriondo JM (2003) Plant conservation: old problems, new perspectives. Biol Conserv 113:321–335.  https://doi.org/10.1016/S0006-3207(03)00121-6CrossRefGoogle Scholar
  8. 8.
    Efimov PG (2011) Revealing the decline and expansion of orchids of NW European Russia. Eur J Environ Sci 1(2):7–17Google Scholar
  9. 9.
    Feldman D, Prat D (2011) Conservation recommendations from a large survey of French orchids. Eur J Environ Sci 1(2):8–27Google Scholar
  10. 10.
    Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Chase MW, Cameron KM, Barrett RL, Freudebstein JV (2003) DNA data and Orchidaceae systematics: a new phylogenetic classification. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota KinabaluGoogle Scholar
  12. 12.
    Cribb PJ, Kell SP, Dixon KW, Barrett RL (2003) Orchid conservation: a global perspective. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota KinabaluGoogle Scholar
  13. 13.
    Pillon Y, Chase M (2006) Taxonomic exaggeration and its effects on orchid conservation. Conserv Biol 21:263–265CrossRefGoogle Scholar
  14. 14.
    Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556CrossRefGoogle Scholar
  15. 15.
    Zhang ZJ, Yan YJ, Tian Y, Li JS, He JS, Tang ZY (2015) Distribution and conservation of orchid species richness in China. Biol Conserv 181:64–72.  https://doi.org/10.1016/j.biocon.2014.10.026CrossRefGoogle Scholar
  16. 16.
    Vakhrameeva MG, Tatarenko IV, Varlygina TI, Torosyan GK, Zagulski MN (2008) Orchids of Russia and adjacent countries (within the borders of the former USSR). ARG Gantner Verlag KG, RuggellGoogle Scholar
  17. 17.
    Hutchings MJ (1989) Population biology and conservation of Ophrys sphegodes. In: Pritchard HW (ed) Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Kull T, Kindlmann P, Hutchings M, Primack B (2006) Conservation biology of orchids: introduction to the special issue. Biol Conserv 129:1–3CrossRefGoogle Scholar
  19. 19.
    Wotavová K, Balounová Z, Kindlmann P (2004) Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol Conserv 118:271–279CrossRefGoogle Scholar
  20. 20.
    Janečková P, Wotavová K, Schödelbauerová I, Jersáková J, Kindlmann P (2006) Relative effects of management and environmental conditions on performance and survival of populations of a terrestrial orchid, Dactylorhiza majalis. Biol Conserv 129:40–49CrossRefGoogle Scholar
  21. 21.
    Hágsater E, Dumont V (1996) Orchids: status, survey and conservation action plan. IUCN, GlandGoogle Scholar
  22. 22.
    Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697.  https://doi.org/10.1146/annurev.ecolsys.110308.120159CrossRefGoogle Scholar
  23. 23.
    Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435.  https://doi.org/10.1111/ele.12189CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009.  https://doi.org/10.1111/j.1461-0248.2005.00795.xCrossRefGoogle Scholar
  25. 25.
    Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77CrossRefGoogle Scholar
  26. 26.
    Rocchini D, Hortal J, Lengyel S, Lobo JM, Jimenez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226CrossRefGoogle Scholar
  27. 27.
    Tsiftsis S, Tsiripidis I, Trigas R, Karagiannakidou V (2012) The effect of presence/absence vs. continuous suitability data on reserve selection. Eur J Environ Sci 2(2):125–137Google Scholar
  28. 28.
    Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  29. 29.
    Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distribution. Ecol Model 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026CrossRefGoogle Scholar
  30. 30.
    Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175.  https://doi.org/10.1111/j.0906-7590.2008.5203.xCrossRefGoogle Scholar
  31. 31.
    Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologist. Divers Distrib 17:43–57.  https://doi.org/10.1111/j.1472-4642.2010.00725.xCrossRefGoogle Scholar
  32. 32.
    Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One 9:e97122CrossRefGoogle Scholar
  33. 33.
    Hernández P, Graham C, Lawrence L, Albert D (2006) The effect of sample size and species characteristics of performance of different species distribution modeling methods. Ecography 29:773–785CrossRefGoogle Scholar
  34. 34.
    Yi Y-J, Cheng X, Yang Z-F, Zhang S-H (2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng 92:260–269CrossRefGoogle Scholar
  35. 35.
    Kolanowska M (2013) Glacial refugia and migration routes of the neotropical genus Trizeuxis (Orchidaceae). Acta Soc Bot Pol 82:225–230.  https://doi.org/10.5586/asbp.2013.024CrossRefGoogle Scholar
  36. 36.
    Wan J, Wang C, Han S, Yu J (2014) Planning the priority protected areas of endangered orchid species in northeastern China. Biodivers Conserv 23:1395–1409.  https://doi.org/10.1007/s10531-014-0671-0CrossRefGoogle Scholar
  37. 37.
    Reina-Rodríguez GA, Rubiano JE, Llanos FAC, Otero JT (2016) Spatial distribution of dry forest orchids in the Cauca River Valley and Dagua Canyon: towards a conservation strategy to climate change. J Nat Conserv 30:32–43.  https://doi.org/10.1016/j.jnc.2016.01.004CrossRefGoogle Scholar
  38. 38.
    Vollering J, Schuiteman A, de Vogel E, van Vugt R, Raes N (2016) Phytogeography of New Guinean orchids: patterns of species richness and turnover. J Biogeogr 43:204–214.  https://doi.org/10.1111/jbi.12612CrossRefGoogle Scholar
  39. 39.
    Nature Conservation Agency of the Czech Republic (2006) http://portal.nature.cz/publik_syst/ctihtmlpage.php?what=3&nabidka=hlavni. Accessed 24 Mar 2014
  40. 40.
    Czech National Phytosociological Database. Vegetation Science Group, Department of Botany and Zoology, Faculty of Science, Masaryk University (2005) http://www.sci.muni.cz/botany/vegsci/dbase.php?lang=cz. Accessed 21 Feb 2014
  41. 41.
    South Bohemian Branch. Czech Botanical Society (2017) https://botanospol.cz/cs/node/42. Accessed 03 Mar 2014
  42. 42.
    Pearson RG, Thuiller W, Araújo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711CrossRefGoogle Scholar
  43. 43.
    Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effect of sample size on the performance of species distribution models. Divers Distrib 14:763–773CrossRefGoogle Scholar
  44. 44.
    Štípková Z, Kosánová K, Romportl D, Kindlmann P (2018) Chapter 8, Determinants of orchid occurrence: a Czech example. In: Şen B, Grillo O (eds) Selected studies in biodiversity. InTechOpen, LondonGoogle Scholar
  45. 45.
    Kosánová K (2017) Dynamika výskytu orchidejí ve vybraném modelovém území v jižních Čechách. Mgr. Thesis, Charles UniversityGoogle Scholar
  46. 46.
    Dykyjová D (2003) Ekologie středoevropských orchidejí. KOPP, České BudějoviceGoogle Scholar
  47. 47.
    Jersáková J, Kindlmann P (2004) Zásady péče o orchidejová stanoviště. KOPP, České BudějoviceGoogle Scholar
  48. 48.
    Průša D (2005) Orchideje České republiky. Computer Press, BrnoGoogle Scholar
  49. 49.
    Lepší P, Lepší M, Boublík K, Stech M, Hans V (2013) Červená kniha květeny jižní části Čech. Jihočeské muzeum v Českých Budějovicích, České BudějoviceGoogle Scholar
  50. 50.
    AOPK ČR (2013) Konsolidovaná vrstva ekosystémů. Agentura ochrany přírody a krajiny ČR. [Electronic geographical data]Google Scholar
  51. 51.
  52. 52.
    Kindlmann P, Balounová Z (1999) Flowering regimes of terrestrial orchids: chaos or regularity? J Veg Sci 10:269–273CrossRefGoogle Scholar
  53. 53.
    Jersáková J, Kindlmann P, Stříteský M (2002) Population dynamics of Orchis morio in the Czech Republic under human influence. In: Kindlmann P, Willems JH, Whigham DF (eds) Trends and fluctuations and underlying mechanisms in terrestrial orchid populations. Backhuys Publishers, LeidenGoogle Scholar
  54. 54.
    Chán V (1999) Komentovaný červený seznam květeny jižní části Čech. AOPK ČR, PrahaGoogle Scholar
  55. 55.
    Štípková Z, Kindlmann P (2015) Extent and reasons for meadows in South Bohemia becoming unsuitable for orchids. Eur J Environ Sci 5:142–147Google Scholar
  56. 56.
    Baumann H, Künkele S, Lorenz R (2009) Orchideje Evropy a přilehlých oblastí. Academia, PrahaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zuzana Štípková
    • 1
    • 2
    Email author
  • Dušan Romportl
    • 3
  • Pavel Kindlmann
    • 1
    • 2
  1. 1.Global Change Research InstituteAcademy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic
  2. 2.Institute for Environmental Studies, Faculty of ScienceCharles UniversityBenátská 2/Prague 2Czech Republic
  3. 3.Department of Physical Geography and Geoecology, Faculty of ScienceCharles UniversityAlbertov 6Czech Republic

Section editors and affiliations

  • Hippolyte Kodja
    • 1
  1. 1.Université de La Réunion, UMR PVBMTSaint DenisRéunion

Personalised recommendations