Advertisement

Production of Cholinesterase-Inhibiting Compounds in In Vitro Cultures of Club Mosses

  • Wojciech J. SzypułaEmail author
  • Agnieszka Pietrosiuk
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

This review provides a comprehensive overview of the cholinesterase-inhibiting compound production in in vitro culture of club mosses (Lycopodiaceae sensu lato). Some hallmarks in a rich history of studies on club mosses, their complex systematics and phylogeny, and secondary metabolites with potential medicinal uses are presented. The review summarizes the published literature, from historical times to the present, including reports on the latest developments in the biosynthesis of alkaloids using different methods. Currently, over 30 compounds which are AChE inhibitors are being assessed in various phases of preclinical and clinical trials, and a few have been approved for use. Huperzine A (HupA, selagine), an alkaloid isolated from some club mosses, has been chosen as a promising drug candidate for Alzheimer’s disease. Although the procedure for the total HupA synthesis has been developed, the pharmaceutical industry uses mainly Huperzia serrata sporophytes collected in its natural habitat. Currently, a total of approximately 350 different Lycopodium alkaloids are known, and some of them demonstrate very strong acetylcholinesterase inhibitory or butyrylcholinesterase-inhibiting activity. Since the 1950s, a number of approaches to Lycopod regeneration have been described, and some appeared to be potentially useful for large-scale propagation of the plant material, including the production of secondary metabolites. Some other established cultures which partially succeeded used Lycopod gametophytes or sporophytes. Some of those studies dealt specifically with the biosynthesis of alkaloids and obtaining the biomass for their isolation. These values clearly demonstrate that the highest HupA content in the plant material from in vitro tissue cultures exceeds by approximately 26-fold or by 13-fold the mean HupA level in the whole plant of H. serrata or by 10-fold the highest HupA content in the H. serrata sporophytes with the most efficient biosynthesis of the alkaloid. Importantly, the in vitro methods successfully shorten the life cycle of the plants which under natural conditions can take many years to develop.

Keywords

Club mosses Huperzine A Lycopodiaceae Huperziaceae Alkaloids Acetylcholinesterase inhibitory In vitro culture 

Abbreviations

½MS

Murashige and Skoog medium with half strength mineral salt content and full strength of organic component

ACh

Acetylcholine

AChE

Acetylcholinesterase

AD

Alzheimer’s disease

BuChE

Butyrylcholinesterase

CNS

Central nervous system

HupA

Huperzine A (selagine)

HupB

Huperzine B

s.l.

Sensu lato

s.s.

Sensu stricto

References

  1. 1.
    Ma X, Tan C, Zhu D, Gang DR, Xiao P (2007) Huperzine A from Huperzia species – an ethnopharmacological review. J Ethnopharmacol 113:15–34.  https://doi.org/10.1016/j.jep.2007.05.030CrossRefPubMedGoogle Scholar
  2. 2.
    Liu JS, Zhu YL, Yu CM, Zhou YZ, Han YY, Wu FW, Qi BF (1986) The structures of Huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem 64:837–883.  https://doi.org/10.1139/v86-137CrossRefGoogle Scholar
  3. 3.
    Liu JS, Yu CM, Zhou YZ, Han YY, Wu FW, Qi BF, Zhu YL (1986) Study on the chemistry of Huperzine-A and Huperzine-B. Acta Chim Sin 44:1035–1040Google Scholar
  4. 4.
    Ma X, Gang DR (2004) The Lycopodium alkaloids. Nat Prod Rep 21:752–772.  https://doi.org/10.1039/b409720nCrossRefPubMedGoogle Scholar
  5. 5.
    Frisoni GB (2001) Treatment of Alzheimer’s disease with acetylcholinesterase inhibitors: bridging the gap between evidence and practice. J Neurol 248:551–557.  https://doi.org/10.1007/s004150170131CrossRefPubMedGoogle Scholar
  6. 6.
    Law A, Gauthier S, Quirion R (2001) Say NO to Alzheimer’s disease: the putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res Rev 35(1):73–96.  https://doi.org/10.1016/S0165-0173(00)00051-5CrossRefPubMedGoogle Scholar
  7. 7.
    Carlson A (2001) A paradigm shift in brain research. Science 294:1021–1024.  https://doi.org/10.1126/science.1066969CrossRefGoogle Scholar
  8. 8.
    Wszelaki N (2009) Plants as a source of acetylcholinesterase and butyrylcholinesterase inhibitors. Postępy Fitoter 1:24–38Google Scholar
  9. 9.
    Qiang BC, Wang M, Zhou ZF, Chen K, Zhou RR, Chen GS (1995) Pharmacokinetics of tablet Huperzine A in six volunteers. Acta Pharmacol Sin 16(5):396–398Google Scholar
  10. 10.
    Xu SS, Gao ZY, Weng Z, Du ZM, Xu WA, Yang JS, Zhang ML, Tong ZH, Fang YS, Chai XS (1995) Efficacy of tablet Huperzine A on memory, cognition, and behavior in Alzheimer’s disease. Acta Pharmacol Sin 16(5):391–395Google Scholar
  11. 11.
    Cheng DH, Ren H, Tang XC (1996) Huperzine A, a novel promising acetylcholinesterase inhibitor. Neuroreport 8:97–101.  https://doi.org/10.1097/00001756-199612200-00020CrossRefPubMedGoogle Scholar
  12. 12.
    Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G (2016) Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev 15(1):51–85.  https://doi.org/10.1007/s11101-014-9384-yCrossRefGoogle Scholar
  13. 13.
    Wang R, Zhang HY, Tang XC (2001) Huperzine A attenuates cognitive dysfunction and neuronal degeneration by β-amyloid protein-(1-40) in rat. Eur J Pharmacol 421:149–156.  https://doi.org/10.1016/S0014-2999(01)01030-5CrossRefPubMedGoogle Scholar
  14. 14.
    Xiao XQ, Wang R, Han YF, Tang XC (2000) Protective effects of Huperzine A on beta-amyloid (25–35) induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett 286:155–158.  https://doi.org/10.1016/S0304-3940(00)01088-0CrossRefPubMedGoogle Scholar
  15. 15.
    Tang LL, Wang R, Tang XC (2005) Huperzine A protects SHSY5Y neuroblastoma cells against oxidative stress damage via nerve growth factor production. Eur J Pharmacol 519:9–15.  https://doi.org/10.1016/j.ejphar.2005.06.026CrossRefPubMedGoogle Scholar
  16. 16.
    Chiu HF, Zhang M (2000) Dementia research in China. Int J Geriatr Psychiatry 15:947–953.  https://doi.org/10.1002/1099-1166(200010)15:10%3C947::AID-GPS222%3E3.3.CO;2-DCrossRefPubMedGoogle Scholar
  17. 17.
    Wang R, Yan H, Tang XC (2006) Progress in studies of Huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27:1–26.  https://doi.org/10.1111/j.1745-7254.2006.00255.xCrossRefPubMedGoogle Scholar
  18. 18.
    Ma X, Tan C, Zhu D, Gang D (2006) A survey of potential Huperzine A natural resources in China: the Huperziaceae. J Ethnopharmacol 104:54–67.  https://doi.org/10.1016/j.jep.2005.08.042CrossRefPubMedGoogle Scholar
  19. 19.
    Wu Q-Q, Gu Y (2006) Quantification of Huperzine A in Huperzia serrata by HPLC-UV and identification of the major constituents in its alkaloid extracts by HPLC-DAD-MS-MS. J Pharm Biomed Anal 40:993–998.  https://doi.org/10.1016/j.jpba.2005.07.047CrossRefPubMedGoogle Scholar
  20. 20.
    Skog JE, Hill CR (1992) The mesozoic herbaceous lycopsid. Ann Mo Bot Gard 79:648–675.  https://doi.org/10.2307/2399758CrossRefGoogle Scholar
  21. 21.
    Wikström N, Kenrick P (2001) Evolution of Lycopodiaceae (Lycopsida): estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Mol Phylogenet Evol 19(2):177–186.  https://doi.org/10.1006/mpev.2001.0936CrossRefPubMedGoogle Scholar
  22. 22.
    Øllgaard B (1987) A revised classification of the Lycopodiaceae s. lat. Opera Bot 92:153–178Google Scholar
  23. 23.
    Wagner WH Jr, Beitel JM (1992) Generic classification of modern North American Lycopodiaceae. Ann Mo Bot Gard 79:676–686.  https://doi.org/10.2307/2399759CrossRefGoogle Scholar
  24. 24.
    Schuettpelz E (2016) A community – derived classification for extant lycophytes and ferns. J Syst Evol 54(6):563–603.  https://doi.org/10.1111/jse.12229CrossRefGoogle Scholar
  25. 25.
    Rothmaler W (1944) Pteridophyten-Studien I. Feddes Repert 54:55–82.  https://doi.org/10.1002/fedr.19440540106CrossRefGoogle Scholar
  26. 26.
    Rothmaler W (1962) Über eininge Diphasium – Arten (Lycopodiaceae). Feddes Repert 66:234–236Google Scholar
  27. 27.
    Wikström N, Kenrick P (1997) Phylogeny of Lycopodiaceae (Lycopsida) and the relationship of Phylloglossum drummondii Kunze based on rbcL sequences. Int J Plant Sci 158(6): 826–871.  https://doi.org/10.1086/297501CrossRefGoogle Scholar
  28. 28.
    Wikström N, Kenrick P, Chase M (1999) Epiphytism and terrestrialization in tropical Huperzia (Lycopodiaceae). Plant Syst Evol 218:221–243.  https://doi.org/10.1007/BF01089229CrossRefGoogle Scholar
  29. 29.
    Wikström N, Kenrick P (2000) Phylogeny of epiphytic Huperzia (Lycopodiaceae): paleotropical and neotropical clades corroborated by rbcL sequences. Nord J Bot 20: 165–171.  https://doi.org/10.1111/j.1756-1051.2000.tb01561.xCrossRefGoogle Scholar
  30. 30.
    Wikström N, Kenrick P (2000) Relationships of Lycopodium and Lycopodiella based on combined on plastid rbcL gene and trnL intron sequence data. Syst Bot 25:459–510.  https://doi.org/10.2307/2666692CrossRefGoogle Scholar
  31. 31.
    Yatsentyuk SP, Valiejo-Roman KM, Samigullin TH, Wikström N, Troitsky AV (2001) Evolution of Lycopodiaceae inferred from spacer sequencing of chloroplast rRNA genes. Russ J Genet 37(9):1068–1073.  https://doi.org/10.1023/A:1011969716528CrossRefGoogle Scholar
  32. 32.
    Szypuła WJ (2013) O filogenezie i systematyce rodziny widłakowatych Lycopodiaceae sensu lato – przegląd piśmiennictwa (phylogeny and systematics of the family Lycopodiaceae – a review). Acta Bot Siles 9:25–56Google Scholar
  33. 33.
    Lemery N (1716) Dictionnaire Universel des drogues simoles. Aux Dépens de la compagnie, Amsterdam, p 235Google Scholar
  34. 34.
    Kosteletzky BF (1831) Allgemeine medizinisch-pharmazeutische Flora, vol 1. Borrosch & André, PragueGoogle Scholar
  35. 35.
    Muszyński J (1946) Widłaki i ich zastosowanie w lecznictwie. Farm Pol 11:345–352Google Scholar
  36. 36.
    Dragensdorff G (1898) Die Heipflanzen der verschiedenen Völker und Zeiten. Ihre Anwendung wesentlichen Bestandtheile und Geschichte. Ein Handbuch für Arzte, Apotheker, Botaniker und Drogiste. Verlag von Ferdinand Enke, StuttgardtGoogle Scholar
  37. 37.
    Hegi G (1906) Illustrierte Flora von Mittel-Europa mit besonderer Berücksichtigung von Deutschland, Oesterreich und der Schweiz zum Gebrauche in den Schulen und zum Selbstunterricht. Verschiedene Herausgeber und Auflagen. Band I. Pteridophyta, Gymnospermae und Monocotyledones. Verlag von J. F. Lehmann, Mȕnchen, pp 63–69Google Scholar
  38. 38.
    Muszyński J (1946) Widłaki i ich zastosowanie w lecznictwie. Farm Pol 10:309–315Google Scholar
  39. 39.
    Hegnauer R (1962) Chemotaxonomie der Pflanzen, vol 1. Birkhäuser Verlag, Basel/StuttgartCrossRefGoogle Scholar
  40. 40.
    Hegnauer R (1986) Chemotaxonomie der Pflanzen, vol VII. Birkhäuser Verlag, Basel/StuttgartCrossRefGoogle Scholar
  41. 41.
    Böedeker K (1881) Lycopodin, das erste Alkaloïd der Gefäfskryptogamen. Liebig’s Ann Chem 208:36–367.  https://doi.org/10.1002/jlac.18812080308CrossRefGoogle Scholar
  42. 42.
    Muszyński J (1955) Alkaloidy i glikozydy flawonowe widłaków. Acta Soc Bot Pol 24(2): 237–244.  https://doi.org/10.5586/asbp.1955.014CrossRefGoogle Scholar
  43. 43.
    Capdeville Ch (1886) Etudes botaniques, chimiques et physiologiques sur pillijan (Lycopodium saururus Lam.). Dissertation, ParisGoogle Scholar
  44. 44.
    Arata PN, Canzoneri F (1892) Contributo allo studio del Pillijan (Lycopodium saururus Lam.). Gazz Chim Ital 22(1):146–157Google Scholar
  45. 45.
    Muszyński J (1934) Alkaloidy europejskich gatunków Lycopodium. Acta Soc Bot Pol 11:277–228.  https://doi.org/10.5586/asbp.1934.016CrossRefGoogle Scholar
  46. 46.
    Muszyński J (1948) The alkaloids of clubmosses. Q J Pharm Pharmacol 21:34PubMedGoogle Scholar
  47. 47.
    Rodewald WJ, Grynkiewicz G (1968) Alkaloidy rodzaju Lycopodium. VI. Alkaloidy Lycopodium selago L. Roczniki Chemii 42:465–475Google Scholar
  48. 48.
    Valenta Z, Yoshimura H, Rogers EF, Ternbach M, Wiesner K (1960) The structure of selagine. Tetrahedron Lett 10:26–33.  https://doi.org/10.1016/S0040-4039(01)99300-1CrossRefGoogle Scholar
  49. 49.
    Yoshimura H, Valenta Z, Wiesner K (1960) A rigorous proof of the selagine structure. Tetrahedron Lett 12:14–17.  https://doi.org/10.1016/S0040-4039(01)99306-2CrossRefGoogle Scholar
  50. 50.
    Ayer WA, Kasitu GC (1989) Some new Lycopodium alkaloids. Can J Chem 67:1077–1086.  https://doi.org/10.1139/v89-163CrossRefGoogle Scholar
  51. 51.
    Achmatowicz O, Uziębło W (1938) Alkaloidy widłaka babimoru (Lycopodium clavatum). Rocz Chemii 18:88–95Google Scholar
  52. 52.
    Achmatowicz O, Rodewald W (1955) Alkaloidy rodzaju Lycopodium II. Lycopodium annotinum L. Rocz Chemii 29(509):508–530Google Scholar
  53. 53.
    Achmatowicz O, Rodewald W (1955) The alkaloids of Lycopodium selago. Bull Acad Pol Sci (Classe III) 3:553–555Google Scholar
  54. 54.
    Harrison WA, MacLean DB (1960) Structure of lycopodine. Chem Ind (London) 261–262Google Scholar
  55. 55.
    Manske RHF, Marion L (1943) The alkaloids of Lycopodium species. III. Lycopodium annotinum L. Can J Res B 21:92–96.  https://doi.org/10.1139/cjr43b-011CrossRefGoogle Scholar
  56. 56.
    Manske RHF, Marion L (1944) The alkaloids of Lycopodium species. V. Lycopodium obscurum L. Can J Res B 22(3):53–55.  https://doi.org/10.1139/cjr44b-007CrossRefGoogle Scholar
  57. 57.
    Manske RHF, Marion L (1946) The alkaloids of Lycopodium species. VII. Lycopodium lucidulum Michx. (Urostachys lucidulum Herter). Can J Res B 24(2):57–62.  https://doi.org/10.1139/cjr46b-009CrossRefGoogle Scholar
  58. 58.
    Manske RHF, Marion L (1947) The alkaloids of Lycopodium species. IX. Lycopodium Annotinum Var. Acrifolium, Fern. and the structure of Annotinine. J Am Chem Soc 69:2126–2129.  https://doi.org/10.1021/ja01201a019CrossRefPubMedGoogle Scholar
  59. 59.
    Marion L, Manske RHF (1944) The alkaloids of Lycopodium species. IV. Lycopodium tristachyum Pursh. Can J Res B 22(1):1–4.  https://doi.org/10.1139/cjr44b-001CrossRefGoogle Scholar
  60. 60.
    Marion L, Manske RHF (1944) The alkaloids of Lycopodium species. VI. Lycopodium clavatum L. Can J Res B 22(5):137–139.  https://doi.org/10.1139/cjr44b-017CrossRefGoogle Scholar
  61. 61.
    Moore BP, Marion L (1953) α-Obscurines and β-obscurines: structure studies. Can J Chem 31:952–957CrossRefGoogle Scholar
  62. 62.
    Bertho A, Stoll A (1952) Bärlapp – Alkaloide, I. Mitteil.: Zur Kenntnis der Alkaloide aus Lycopodium annotinum L. Chem Ber 85(7–8):663–685.  https://doi.org/10.1002/cber.19520850703CrossRefGoogle Scholar
  63. 63.
    Ayer WA, Iverach GG (1960) The structures of α- and β- obscurine. Tetrahedron Lett 10:19–25.  https://doi.org/10.1016/S0040-4039(01)99299-8CrossRefGoogle Scholar
  64. 64.
    Ayer WA, Berezowsky JA, Iverach GG (1962) Lycopodium alkaloids – II The obscurines. Tetrahedron 18:567–573.  https://doi.org/10.1016/S0040-4020(01)92707-3CrossRefGoogle Scholar
  65. 65.
    Ayer WA, Iverach GG (1962) The structure and stereochemistry of lycodoline (Lycopodium alkaloids L.8). Tetrahedron Lett 3:87–92.  https://doi.org/10.1016/S0040-4039(00)71105-1CrossRefGoogle Scholar
  66. 66.
    Ayer WA, Iverach GG (1960) The structure of lycodine. Can J Chem 38:1823–1826.  https://doi.org/10.1139/v60-247CrossRefGoogle Scholar
  67. 67.
    MacLean D (1963) The Lycopodium alkaloids XIII. Mass spectra of representative alkaloids. Can J Chem 41:2654–2670.  https://doi.org/10.1139/v63-387CrossRefGoogle Scholar
  68. 68.
    Ayer WA, Berezowsky JA, Law DA (1962) Lycopodium alkaloids V. The bromination of lycopodine and the structure of alkaloid L. 20. Can J Chem 41:649–657.  https://doi.org/10.1139/v63-092CrossRefGoogle Scholar
  69. 69.
    Ayer WA, Trifonov LS (1994) Lycopodium alkaloids. In: The alkaloids, vol 45. Academic, San Diego, pp 233–266Google Scholar
  70. 70.
    Achmatowicz O, Werner-Zamojska F (1958) Notatka o kwasach organicznych ziela Lycopodium annotinum, L. selago i L. clavatum. Rocz Chemii 32:1127–1130Google Scholar
  71. 71.
    Voirin B, Jay M (1978) Contribution of flavone biochemistry to systematics of the Lycopodiales order Lycopodium genus. Biochem Syst Ecol 6:95–97CrossRefGoogle Scholar
  72. 72.
    Markham KM, Moore NA (1980) Comparative flavonoids glycoside biochemistry as a chemotaxonomic tool in the subdivision of the classical ‘genus’ Lycopodium. Biochem Syst Ecol 8(1):17–20.  https://doi.org/10.1016/0305-1978(80)90020-4CrossRefGoogle Scholar
  73. 73.
    Inubushi Y, Sano T, Tsuda Y (1964) Serratenediol: a new skeletal triterpenoid containing a seven member ring. Tetrahedron Lett 5(21):1303–1310.  https://doi.org/10.1016/S0040-4039(00)90472-6CrossRefGoogle Scholar
  74. 74.
    Hirasawa Y, Kobayashi J, Morita H (2006) Lycoperine A, a novel C27N3-type pentacyclic alkaloid from Lycopodium hamiltonii, inhibiting acety. Org Lett 8(1):123–126.  https://doi.org/10.1021/ol052760qCrossRefPubMedGoogle Scholar
  75. 75.
    Choo CY, Hirasawa Y, Karimata C, Koyama K, Sekiguchi M, Kobayashi J, Morita H (2007) Carinatumins A-C, new alkaloids from Lycopodium carinatum inhibiting acetylcholinesterase. Bioorg Med Chem 15(4):1703–1707.  https://doi.org/10.1016/j.bmc.2006.12.005CrossRefPubMedGoogle Scholar
  76. 76.
    Sun Y, Yan J, Meng H, He CL, Yi P, Qiao Y, Qiu MH (2008) A new alkaloid from Lycopodium japonicum THUNB. Helv Chim Acta 91:2107–2109.  https://doi.org/10.1002/hlca.200890225CrossRefGoogle Scholar
  77. 77.
    Pei G, He GX, Du FL, Jiang DS (2008) A novel alkaloid from Huperzia crispate. J Asian Nat Prod Res 10:931–932.  https://doi.org/10.1080/10286020802181448?scroll=topCrossRefPubMedGoogle Scholar
  78. 78.
    Halldorsdottir ES, Olafsdottir ES, Jaroszewski JW (2008) Alkaloid content of the Icelandic club moss Lycopodium annotinum – acetylcholinesterase inhibitory activity in vitro. Planta Med 74:1043–1043.  https://doi.org/10.1055/s-0028-1084398CrossRefGoogle Scholar
  79. 79.
    Goodger JQD, Whincup AL, Field AR, Holtum JAM, Woodrow IE (2008) Variation in Huperzine A and B in Australasian Huperzia species. Biochem Syst Ecol 36:612–618.  https://doi.org/10.1016/j.bse.2008.05.006CrossRefGoogle Scholar
  80. 80.
    Gao WY, Li YM, Jiang SH, Zhu DY (2008) Two new nitrone alkaloids from Huperzia serrata. Helv Chim Acta 91:1031–1035.  https://doi.org/10.1002/hlca.200890110CrossRefGoogle Scholar
  81. 81.
    Katakawa K, Kogure N, Kitajima M, Takayama H (2009) A new Lycopodium alkaloid, lycoposerramine-R, with a novel skeleton and three new fawcettimine-related alkaloids from Lycopodium serratum. Helv Chim Acta 92:445–452.  https://doi.org/10.1021/ol0167762CrossRefGoogle Scholar
  82. 82.
    Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009) Lycopladines F and G, new C16N2-type alkaloids with an additional C4N unit from Lycopodium complanatum. Tetrahedron Lett 50:4221–4224.  https://doi.org/10.1016/j.tetlet.2009.04.139CrossRefGoogle Scholar
  83. 83.
    Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009) Lycopladine H, a novel alkaloid with fused-tetracyclic skeleton from Lycopodium complanatum. Tetrahedron Lett 50:6534–6536.  https://doi.org/10.1016/j.tetlet.2009.09.035CrossRefGoogle Scholar
  84. 84.
    Ishiuchi K, Kodama S, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009) Lannotinidines H-J, new Lycopodium alkaloids from Lycopodium annotinum. Chem Pharm Bull 57:877–881.  https://doi.org/10.1248/cpb.57.877CrossRefPubMedGoogle Scholar
  85. 85.
    Hirasawa Y, Tanaka T, Koyama K, Morita H (2009) Lycochinines A-C, novel C27N3 alkaloids from Lycopodium chinense. Tetrahedron Lett 50:4816–4819.  https://doi.org/10.1016/j.tetlet.2009.05.072CrossRefGoogle Scholar
  86. 86.
    Hirasawa Y, Kobayashi J, Morita H (2009) The Lycopodium alkaloids. Heterocycles 77:679–729CrossRefGoogle Scholar
  87. 87.
    He J, Chen XQ, Li MM, Zhao Y, Xu G, Cheng X, Peng LY, Xie MJ, Zheng YT, Wang YP, Zhao QS (2009) Lycojapodine A, a novel alkaloid from Lycopodium japonicum. Org Lett 11:1397–1400.  https://doi.org/10.1021/ol900079tCrossRefPubMedGoogle Scholar
  88. 88.
    Zhao FW, Sun QY, Yang FM, Hu GW, Luo JF, Tang GH, Wang YH, Long CL (2010) Palhinine A, a novel alkaloid from Palhinhaea cernua. Org Lett 12:3922–3925.  https://doi.org/10.1021/ol101602nCrossRefGoogle Scholar
  89. 89.
    Xie XY, Jiang JH, Liu Y, Min K, Xue YM, Jing B, Zhang Y, Chen YG (2010) A new Lycopodine alkaloid from Phlegmariurus yunnanensis Ching. Helv Chim Acta 93: 1381–1384.  https://doi.org/10.1002/hlca.200900412CrossRefGoogle Scholar
  90. 90.
    Halldorsdottir ES, Jaroszewski JW, Olafsdottir ES (2010) Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp alpestre. Phytochemistry 71:149–157.  https://doi.org/10.1016/j.phytochem.2009.10.018CrossRefPubMedGoogle Scholar
  91. 91.
    Katakawa K, Mito H, Kogure N, Kitajima M, Wongseripipatana S, Arisawa M, Takayama H (2011) Ten new fawcettimine-related alkaloids from three species of Lycopodium. Tetrahedron 67:6561–6567.  https://doi.org/10.1016/j.tet.2011.05.107CrossRefGoogle Scholar
  92. 92.
    Ishiuchi K, Kubota T, Ishiyama H, Hayashi S, Shibata T, Mori K, Obara Y, Nakahata N, Kobayashi J (2011) Lyconadins D and E, and complanadine E, new Lycopodium alkaloids from Lycopodium complanatum. Bioorg Med Chem 19:749–753.  https://doi.org/10.1016/j.bmc.2010.12.025CrossRefPubMedGoogle Scholar
  93. 93.
    Ishiuchi K, Kubota T, Ishiyama H, Hayashi S, Shibata T, Kobayashi J (2011) Lyconadins C and F, new Lycopodium alkaloids from Lycopodium complanatum. Tetrahedron Lett 52:289–292.  https://doi.org/10.1016/j.tetlet.2010.11.024CrossRefGoogle Scholar
  94. 94.
    Hirasawa Y, Astulla A, Shiro M, Morita H (2011) Lycotetrastine A, a novel hexacyclic alkaloid from Huperzia tetrasticha. Tetrahedron Lett 52:4126–4128.  https://doi.org/10.1016/j.tetlet.2011.05.133CrossRefGoogle Scholar
  95. 95.
    Hirasawa Y, Matsuya R, Shaari K, Lajis NH, Uchiyama N, Goda Y, Morita H (2012) Lycobelines A-C, novel C16N2-type Lycopodium alkaloids from Huperzia goebelii. Tetrahedron Lett 53:3971–3973.  https://doi.org/10.1016/j.tetlet.2012.05.080CrossRefGoogle Scholar
  96. 96.
    Dong LB, Yang J, He J, Luo HR, Wu XD, Deng X, Peng LY, Cheng X, Zhao QS (2012) Lycopalhine A, a novel sterically congested Lycopodium alkaloid with an unprecedented skeleton from Palhinhaea cernua. Chem Commun 48:9038–9040.  https://doi.org/10.1039/c2cc34676aCrossRefGoogle Scholar
  97. 97.
    Wang XJ, Zhang GJ, Zhuang PY, Zhang Y, Yu SS, Bao XQ, Zhang D, Yuan YH, Chen NH, Ma SG, Qu J, Li Y (2012) Lycojaponicumins A-C, three alkaloids with an unprecedented skeleton from Lycopodium japonicum. Org Lett 14:2614–2617.  https://doi.org/10.1021/ol3009478CrossRefPubMedGoogle Scholar
  98. 98.
    Wang X, Liu YB, Li L, Yu SS, Lv HN, Ma SG, Bao XQ, Zhang D, Qu J, Li Y (2012) Lycojaponicumins D and E: two new alkaloids from Lycopodium japonicum. Org Lett 14:5688–5691.  https://doi.org/10.1080/10286020.2018.1427075CrossRefPubMedGoogle Scholar
  99. 99.
    Shan WG, Ren FY, Ying YM, Tong CP, Zhan ZJ (2012) A new lycopodine alkaloid from Huperzia serrata. J Chem Res 369(1):15–16.  https://doi.org/10.3184/174751912X13249872110014CrossRefGoogle Scholar
  100. 100.
    Sahidan N, Choo CY, Latiff A, Jaman R (2012) Variations of Huperzine A content in Lycopodiaceae species from tropics. Chin J Nat Med 10:125–128.  https://doi.org/10.3724/SP.J.1009.2012.00125CrossRefGoogle Scholar
  101. 101.
    Morel S, Kerzaon I, Roumy V, Azaroual N, Sahpaz S, Joseph H, Bailleul F, Hennebelle T (2012) A new cernuane-type alkaloid from Lycopodium cernuum. Biochem Syst Ecol 45:188–190.  https://doi.org/10.1016/j.bse.2012.07.026CrossRefGoogle Scholar
  102. 102.
    Li B, Zhang WD, He YR, Lu L, Kong DY, Shen YH (2012) New alkaloids from Lycopodium japonicum. Chem Pharm Bull 60:1448–1452.  https://doi.org/10.1248/cpb.c12-00201CrossRefPubMedGoogle Scholar
  103. 103.
    Konrath EL, Neves BM, Passos CD, Lunardi PS, Ortega MG, Cabrera JL, Goncalves CA, Henriques AT (2012) Huperzia quadrifariata and Huperzia reflexa alkaloids inhibit acetylcholinesterase activity in vivo in mice brain. Phytomedicine 19:1321–1324.  https://doi.org/10.1016/j.phymed.2012.08.009CrossRefPubMedGoogle Scholar
  104. 104.
    Konrath EL, Neves BM, Lunardi PS, Passos CD, Simoes-Pires A, Ortega MG, Goncalves CA, Cabrera JL, Moreira JCF, Henriques AT (2012) Investigation of the in vitro and ex vivo acetylcholinesterase and antioxidant activities of traditionally used Lycopodium species from South America on alkaloid extracts. J Ethnopharmacol 139:58–67.  https://doi.org/10.1016/j.jep.2011.10.042CrossRefPubMedGoogle Scholar
  105. 105.
    Shimada N, Abe Y, Yokoshima S, Fukuyama T (2012) Total synthesis of (−)-Lycoposerramine-S. Angew Chem Int Ed 51(47):11824–11826.  https://doi.org/10.1002/anie.201206863CrossRefGoogle Scholar
  106. 106.
    Wang XJ, LiL SYK, Yu SS, Ma SG, Bao XQ, Zhang D, Qu J, Liu YB, Li Y (2013) Nine new lycopodine-type alkaloids from Lycopodium japonicum Thunb. Tetrahedron 69:6234–6240.  https://doi.org/10.1016/j.tet.2013.05.028CrossRefGoogle Scholar
  107. 107.
    Vallejo MG, Ortega MG, Cabrera JL, Agnese AM (2013) N-Demethyl-sauroxine, a novel Lycodine group alkaloid from Huperzia saururus. Tetrahedron Lett 54:5197–5200.  https://doi.org/10.1016/j.tetlet.2013.07.068CrossRefGoogle Scholar
  108. 108.
    Pan K, Luo JG, Kong LY (2013) Three new Lycopodium alkaloids from Lycopodium obscurum. J Asian Nat Prod Res 15:441–445.  https://doi.org/10.1080/10286020.2013.780045CrossRefPubMedGoogle Scholar
  109. 109.
    Liu F, Wu XD, He J, Deng X, Peng LY, Luo HR, Zhao QS (2013) Casuarines A and B, Lycopodium alkaloids from Lycopodium casuarinoides. Tetrahedron Lett 54:4555–4557.  https://doi.org/10.1016/j.tetlet.2013.06.083CrossRefGoogle Scholar
  110. 110.
    Konrath EL, Ortega MG, Bordignon SD, Apel MA, Henriques AT, Cabrera JL (2013) Alkaloid profiling and anticholinesterase activity of South American Lycopodiaceae species. J Enzyme Inhib Med Chem 28:218–222.  https://doi.org/10.3109/14756366.2011.633908CrossRefPubMedGoogle Scholar
  111. 111.
    Hirasawa Y, Kato Y, Wong CP, Uchiyama N, Goda Y, Hadi AHA, Morita H (2013) Huperminone A, a novel C16N-type Lycopodium alkaloid from Huperzia phlegmaria. Tetrahedron Lett 54:1593–1595.  https://doi.org/10.1016/j.tetlet.2013.01.048CrossRefGoogle Scholar
  112. 112.
    Halldorsdottir ES, Palmadottir RH, Nyberg NT, Olafsdottir ES (2013) Phytochemical analysis of alkaloids from the Icelandic club moss Diphasiastrum alpinum. Phytochem Lett 6:355–359.  https://doi.org/10.1016/j.phytol.2013.04.004CrossRefGoogle Scholar
  113. 113.
    Gerasyuto AI, Ma ZX, Buchanan GS, Hsung RP (2013) Establishing the concept of aza-[3+3] annulations using enones as a key expansion of this unified strategy in alkaloid synthesis. Beilstein J Org Chem 9:1170–1178.  https://doi.org/10.3762/bjoc.9.131CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Dong LB, Gao X, Liu F, He J, Wu XD, Li Y, Zhao QS (2013) Isopalhinine A, a unique pentacyclic Lycopodium alkaloid from Palhinhaea cernua. Org Lett 15:3570–3573.  https://doi.org/10.1021/ol401411mCrossRefPubMedGoogle Scholar
  115. 115.
    Cheng JT, Liu F, Li XN, Wu XD, Dong LB, Peng LY, Huang SX, He J, Zhao QS (2013) Lycospidine A, a new type of Lycopodium alkaloid from Lycopodium complanatum. Org Lett 15:2438–2441.  https://doi.org/10.1021/ol400907vCrossRefPubMedGoogle Scholar
  116. 116.
    Calderon AI, Simithy-Williams J, Sanchez R, Espinosa A, Valdespino I, Gupta MP (2013) Lycopodiaceae from Panama: a new source of acetylcholinesterase inhibitors. Nat Prod Res 27:500–505.  https://doi.org/10.1080/14786419.2012.701217CrossRefPubMedGoogle Scholar
  117. 117.
    Wang XJ, Li L, Yu SS, Ma SG, Qu J, Liu YB, Li Y, Wang YD, Tang WB (2013) Five new fawcettimine-related alkaloids from Lycopodium japonicum Thunb. Fitoterapia 91:74–81.  https://doi.org/10.1016/j.fitote.2013.08.007CrossRefPubMedGoogle Scholar
  118. 118.
    Zhang DB, Chen JJ, Zhang L, Song QY, Gao K (2014) Bioactive alkaloids from Palhinhaea cernua. Phytochem Lett 10:76–79.  https://doi.org/10.1016/j.phytol.2014.08.008CrossRefGoogle Scholar
  119. 119.
    Zhang DB, Chen JJ, Song QY, Zhang L, Gao K (2014) Lycodine-type alkaloids from Lycopodiastrum casuarinoides and their acetylcholinesterase inhibitory activity. Molecules 19:9999–10010.  https://doi.org/10.3390/molecules19079999CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Yu CM, Calhoun LA, Konder RM, Grant AS (2014) Huperzimine, a novel Lycopodium alkaloid from Huperzia serrata. Can J Chem 92:406–410.  https://doi.org/10.1139/cjc-2013-0520CrossRefGoogle Scholar
  121. 121.
    Ying YM, Liu XS, Tong CP, Wang JW, Zhan ZJ, Shan WG (2014) Lycopodium alkaloids from Huperzia serrata. Helv Chim Acta 97:1433–1439.  https://doi.org/10.1080/10286020.2010.522180CrossRefGoogle Scholar
  122. 122.
    Thorroad S, Worawittayanont P, Khunnawutmanotham N, Chimnoi N, Jumruksa A, Ruchirawat S, Thasana N (2014) Three new Lycopodium alkaloids from Huperzia carinata and Huperzia squarrosa. Tetrahedron 70:8017–8022.  https://doi.org/10.1016/j.tet.2014.08.042CrossRefGoogle Scholar
  123. 123.
    Pan K, Luo JG, Kong LY (2014) A new Lycopodium alkaloid from Phlegmariurus fargesii. Chin J Nat Med 12:373–376.  https://doi.org/10.1016/S1875-5364(14)60046-7CrossRefPubMedGoogle Scholar
  124. 124.
    Liu F, Dong LB, Gao X, Wu XD, He J, Peng LY, Cheng X, Zhao QS (2014) New Lycopodium alkaloids from Phlegmariurus squarrosus. J Asian Nat Prod Res 16:574–580.  https://doi.org/10.1080/10286020.2014.920010CrossRefPubMedGoogle Scholar
  125. 125.
    Jiang WW, Liu F, Gao X, He J, Cheng X, Peng LY, Wu XD, Zhao QS (2014) Huperserines A-E, Lycopodium alkaloids from Huperzia serrata. Fitoterapia 99:72–77.  https://doi.org/10.1016/j.fitote.2014.09.005CrossRefPubMedGoogle Scholar
  126. 126.
    Jiang WP, Ishiuchi K, Wu JB, Kitanaka S (2014) Serralongamine A, a new Lycopodium alkaloid from Lycopodium serratum var. longipetiolatum. Heterocycles 89:747–752.  https://doi.org/10.3987/COM-13-12928CrossRefGoogle Scholar
  127. 127.
    Hirasawa Y, Kato Y, Wong CP, Uchiyama N, Goda Y, Hadi AHA, Ali HM, Morita H (2014) Hupermine A, a novel C16N2-type Lycopodium alkaloid from Huperzia phlegmaria. Tetrahedron Lett 55:902–1904.  https://doi.org/10.1016/j.tetlet.2014.01.141CrossRefGoogle Scholar
  128. 128.
    Dong LB, Wu YN, Jiang SZ, Wu XD, He J, Yang YR, Zhao QS (2014) Isolation and complete structural assignment of Lycopodium alkaloid Cernupalhine A: theoretical prediction and total synthesis validation. Org Lett 16:2700–2703.  https://doi.org/10.1021/ol500978kCrossRefPubMedGoogle Scholar
  129. 129.
    Chuong NN, Huong NTT, Hung TM, Luan TC (2014) Anti-cholinesterase activity of Lycopodium alkaloids from Vietnamese Huperzia squarrosa (Forst.) Trevis. Molecules 19:19172–19179.  https://doi.org/10.3390/molecules191119172CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Chen Y, He HW, Mei ZN, Yang GZ (2014) Lycopodium alkaloids from Lycopodium obscurum L. Helv Chim Acta 97:19–52.  https://doi.org/10.1002/hlca.201300243CrossRefGoogle Scholar
  131. 131.
    Liu YC, Fan M, Jiang WW, Liu F, Wu XD, He J, Cheng X, Peng LY, Su J, Zhang ZJ, Zhao QS (2015) Four new fawcettimine-related alkaloids from Phlegmariurus squarrosus. J Asian Nat Prod Res 17:967–975.  https://doi.org/10.1080/10286020.2015.1043281CrossRefPubMedGoogle Scholar
  132. 132.
    Li P, Huang W, Zhuo JX, Guo ZY, Cao W, Xu L, Ma LJ, Chen ZE, Kennelly EJ, Wu SB, Long CL (2015) Seven new Lycopodium alkaloids from the aerial parts of Phlegmariurus squarrosus. Tetrahedron 71:5308–5314.  https://doi.org/10.1016/j.tet.2015.06.012CrossRefGoogle Scholar
  133. 133.
    Halldorsdottir ES, Kowal NM, Olafsdottir ES (2015) The genus Diphasiastrum and its Lycopodium alkaloids. Planta Med 81:995–1002.  https://doi.org/10.1055/s-0035-1546182CrossRefPubMedGoogle Scholar
  134. 134.
    Tang Y, Xiong J, Hu JF (2015) Lycopodium alkaloids from Diphasiastrum complanatum. Nat Prod Commun 10(12):2091–2094.  https://doi.org/10.1177/1934578X1501001219CrossRefPubMedGoogle Scholar
  135. 135.
    Yang YY, Wang ZC, Wu JC, Chen YG (2016) Chemical constituents of plants from the genus Phlegmariurus. Chem Biodivers 13:269–274.  https://doi.org/10.1002/cbdv.201500043CrossRefPubMedGoogle Scholar
  136. 136.
    Yang Q, Zhu YQ, Peng W, Zhan R, Chen YG (2016) A new Lycopodine-type alkaloid from Lycopodium japonicum. Nat Prod Res 30:2220–2224.  https://doi.org/10.1080/14786419.2016.1146885CrossRefPubMedGoogle Scholar
  137. 137.
    Wang ZC, Wu JC, Zhao ND, Yang YY, Chen YG (2016) Two new Lycopodium alkaloids from Phlegmariurus phlegmaria (L.) Holub. Nat Prod Res 30:241–245.  https://doi.org/10.1080/14786419.2015.1046131CrossRefPubMedGoogle Scholar
  138. 138.
    Wang XJ, Li L, Yu SS, Ma SG, Qu J, Liu YB, Li Y, Wang YD, Tang WB (2016) Five new fawcettimine-related alkaloids from Lycopodium japoniucm Thunb (vol 91, pg 74, 2013). Fitoterapia 114:194–194.  https://doi.org/10.1016/j.fitote.2016.09.018CrossRefPubMedGoogle Scholar
  139. 139.
    Wang LJ, Xiong J, Wang W, Zhang HY, Yang GX, Hu JF (2016) Lycopodium alkaloids from Lycopodium obscurum L. f. strictum. Phytochem Lett 15:260–264.  https://doi.org/10.1016/j.phytol.2016.02.001CrossRefGoogle Scholar
  140. 140.
    Tang Y, Xiong J, Zou YK, Zhang HY, Hu JF (2016) Palhicerines A-F, Lycopodium alkaloids from the club moss Palhinhaea cernua. Phytochemistry 131:130–139.  https://doi.org/10.1016/j.phytochem.2016.08.010CrossRefPubMedGoogle Scholar
  141. 141.
    Tang Y, Xiong J, Zou Y, Nay B, Wang LJ, Hu JF (2016) Palcernuine, the first [5/6/6/6]-cernuane-type alkaloid from Palhinhaea cernua f. sikkimensis. Chin Chem Lett 27:969–973.  https://doi.org/10.1016/j.cclet.2016.02.014CrossRefGoogle Scholar
  142. 142.
    Tang Y, Xiong J, Zhang JJ, Wang W, Zhang HY, Hu JF (2016) Annotinolides A-C, three Lycopodane-derived 8,5-lactones with polycyclic skeletons from Lycopodium annotinum. Org Lett 18:4376–4379.  https://doi.org/10.1021/acs.orglett.6b02132CrossRefPubMedGoogle Scholar
  143. 143.
    Pongpamorn P, Wanerlor S, Ruchirawat S, Thasana N (2016) Lycoclavatumide and 8 beta,11 alpha-dihydroxylycopodine, a new fawcettimine and lycopodine-type alkaloid from Lycopodium clavatum. Tetrahedron 72:7065–7069.  https://doi.org/10.1016/j.tet.2016.09.046CrossRefGoogle Scholar
  144. 144.
    Nilsu T, Thorroad S, Ruchirawat S, Thasana N (2016) Squarrosine A and Pyrrolhuperzine A, new Lycopodium alkaloids from Thai and Philippine Huperzia squarrosa. Planta Med 82:1046–1050.  https://doi.org/10.1055/s-0042-106904CrossRefPubMedGoogle Scholar
  145. 145.
    Meng WJ, Xiong J, Wang WX, Zhang HY, Zeng HQ, Hu JF (2016) Phlefargesiine A, a C16N2 Lycopodium alkaloid with an unprecedented [6/7/6/6]-tetracyclic skeleton from Phlegmariurus fargesii. Tetrahedron Lett 57:3218–3221.  https://doi.org/10.1016/j.tetlet.2016.06.050CrossRefGoogle Scholar
  146. 146.
    Liu YC, Su J, Wu XD, Zhang ZJ, Fan M, Zhu QF, He J, Li XN, Peng LY, Cheng X, Zhao QS (2016) Five new Lycopodium alkaloids from the aerial parts of Phlegmariurus henryi. Fitoterapia 115:148–154.  https://doi.org/10.1016/j.fitote.2016.10.005CrossRefPubMedGoogle Scholar
  147. 147.
    Kogure N, Maruyama M, Wongseripipatana S, Kitajima M, Takayama H (2016) New Lycopodine-type alkaloids from Lycopodium carinatum. Chem Pharm Bull 64:793–799.  https://doi.org/10.1248/cpb.c16-00171CrossRefPubMedGoogle Scholar
  148. 148.
    Jiang WW, Liu YC, Zhang ZJ, Liu YC, He J, Su J, Cheng X, Peng LY, Shao LD, Wu XD, Yang JH, Zhao QS (2016) Obscurumines H-P, new Lycopodium alkaloids from the club moss Lycopodium obscurum. Fitoterapia 109:155–161.  https://doi.org/10.1016/j.fitote.2015.12.017CrossRefPubMedGoogle Scholar
  149. 149.
    Ishiuchi K, Jiang WP, Fujiwara Y, Wu JB, Kitanaka S (2016) Serralongamines B-D, three new Lycopodium alkaloids from Lycopodium serratum var. longipetiolatum, and their inhibitory effects on foam cell formation in macrophages. Bioorg Med Chem Lett 26:2636–2640.  https://doi.org/10.1016/j.bmcl.2016.04.019CrossRefPubMedGoogle Scholar
  150. 150.
    Hao LJ, Zhou YJ, Wang LL, Pan K (2016) Three new Lycopodium alkaloids from Phlegmariurus fargesii. Helv Chim Acta 99:228–231.  https://doi.org/10.1002/hlca.201500240CrossRefGoogle Scholar
  151. 151.
    Dong LB, Wu XD, Shi X, Zhang ZJ, Yang J, Zhao QS (2016) Phleghenrines A-D and Neophleghenrine A, bioactive and structurally rigid Lycopodium alkaloids from Phlegmariurus henryi. Org Lett 18:4498–4501.  https://doi.org/10.1021/acs.orglett.6b02065CrossRefPubMedGoogle Scholar
  152. 152.
    Cheng JT, Zhang ZJ, Li XN, Peng LY, Luo HR, Wu XD, Zhao QS (2016) Lyconadins G and H, two rare Lyconadin-type Lycopodium alkaloids from Lycopodium complanatum. Nat Prod Bioprospect 6:279–284.  https://doi.org/10.1007/s13659-016-0111-9CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Armijos C, Gilardoni G, Amay L, Lozano A, Bracco F, Ramirez J, Bec N, Larroque C, Finzi PV, Vidari G (2016) Phytochemical and ethnomedicinal study of Huperzia species used in the traditional medicine of Saraguros in Southern Ecuador; AChE and MAO inhibitory activity. J Ethnopharmacol 193:546–554.  https://doi.org/10.1016/j.jep.2016.09.049CrossRefPubMedGoogle Scholar
  154. 154.
    Zhang ZJ, Nian Y, Zhu QF, Li XN, Su J, Wu XD, Yang J, Zhao QS (2017) Lycoplanine A, a C16N Lycopodium alkaloid with a 6/9/5 tricyclic skeleton from Lycopodium complanatum. Org Lett 19:4668–4671.  https://doi.org/10.1021/acs.orglett.7b02293CrossRefPubMedGoogle Scholar
  155. 155.
    Wang LL, Zhou ZB, Zhu XL, Yuan FY, Miyamoto T, Pan K (2017) Lycocasuarines A-C, Lycopodium alkaloids from Lycopodiastrum casuarinoides. Tetrahedron Lett 58:4827–4831.  https://doi.org/10.1016/j.tetlet.2017.11.019CrossRefGoogle Scholar
  156. 156.
    Tung BT, Hai NT, Thu DK (2017) Antioxidant and acetylcholinesterase inhibitory activities in vitro of different fraction of Huperzia squarrosa (Forst.) Trevis extract and attenuation of scopolamine-induced cognitive impairment in mice. J Ethnopharmacol 198:24–32.  https://doi.org/10.1016/j.jep.2016.12.037CrossRefPubMedGoogle Scholar
  157. 157.
    Tang Y, Xiong J, Zou YK, Wang W, Huang C, Zhang HY, Hu JF (2017) Annotinolide F and lycoannotines A-I, further Lycopodium alkaloids from. Phytochemistry 143:1–11.  https://doi.org/10.1016/j.phytochem.2017.07.003CrossRefPubMedGoogle Scholar
  158. 158.
    Odorcyk FK, Sanches EF, Nicola FC, Moraes J, Pettenuzzo LF, Kolling J, Siebert C, Longoni A, Konrath EL, Wyse A, Netto CA (2017) Administration of Huperzia quadrifariata extract, a cholinesterase inhibitory alkaloid mixture, has neuroprotective effects in a rat model of cerebral hypoxia-ischemia. Neurochem Res 42:552–562.  https://doi.org/10.1007/s11064-016-2107-6CrossRefPubMedGoogle Scholar
  159. 159.
    Liu YC, Zhang ZJ, Su J, Peng LY, Pan LT, Wu XD, Zhao QS (2017) Lycodine-type Lycopodium alkaloids from the whole plants of Huperzia serrata. Nat Prod Bioprospect 7(5):405–411.  https://doi.org/10.1007/s13659-017-0140-zCrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Nakayama W, Monthakantirat O, Fujikawa K, Watthana S, Kitanaka S, Makino T, Ishiuchi K (2017) Phlenumdines A-C, new Lycopodium alkaloids isolated from Phlegmariurus nummularhfolius. Heterocycles 94:2247–2261.  https://doi.org/10.3987/COM-17-13797CrossRefGoogle Scholar
  161. 161.
    Garcia MV, von Poser GL, Apel M, Tlatilpa RC, Mendoza-Ruiz A, Villarreal ML, Henriques AT, Taketa AC (2017) Anticholinesterase activity and identification of Huperzine A in three Mexican lycopods: Huperzia cuernavacensis, Huperzia dichotoma and Huperzia linifolia (Lycopodiaceae). Pak J Pharm Sci 30:235–239PubMedGoogle Scholar
  162. 162.
    Wang LL, Hao LJ, Zhou ZB, Zhu XL, Shi ZH, Miyamoto T, Pan K (2018) Lycodine-type alkaloids and their glycosides from Lycopodiastrum casuarinoides. Phytochemistry 154:63–72.  https://doi.org/10.1016/j.phytochem.2018.06.016CrossRefPubMedGoogle Scholar
  163. 163.
    Nguyen HT, Doan HT, Ho DV, Pham KT, Raal A, Morita H (2018) Huperphlegmines A and B, two novel Lycopodium alkaloids with an unprecedented skeleton from Huperzia phlegmaria, and their acetylcholinesterase inhibitory activities. Fitoterapia 129:267–271.  https://doi.org/10.1016/j.fitote.2018.07.016CrossRefPubMedGoogle Scholar
  164. 164.
    Liu Y, Xu PS, Ren Q, Chen X, Zhou G, Li D, Li XM, Xu KP, Yu X, Tan GS (2018) Lycodine-type alkaloids from Lycopodiastrum casuarinoides and their cholinesterase inhibitory activities. Fitoterapia 130:203–209.  https://doi.org/10.1016/j.fitote.2018.09.005CrossRefPubMedGoogle Scholar
  165. 165.
    Hirasawa Y, Mitsui C, Uchiyama N, Hakamatsuka T, Morita H (2018) Hupercumines A and B, Lycopodium alkaloids from Huperzia cunninghamioides, inhibiting acetylcholinesterase. Org Lett 20:1384–1387.  https://doi.org/10.1021/acs.orglett.8b00152CrossRefPubMedGoogle Scholar
  166. 166.
    Zhu Y, Dong LB, Zhang ZJ, Fan M, Zhu QF, Qi YY, Liu YC, Peng LY, Wu XD, Zhao QS (2019) Three new Lycopodium alkaloids from Lycopodium japonicum. J Asian Nat Prod Res 21:17–24.  https://doi.org/10.1080/10286020.2018.1427075CrossRefPubMedGoogle Scholar
  167. 167.
    Jeap JSY, Lim KH, Yong KT, Lim SH, Kam TS, Low YY (2019) Lycopodium alkaloids: lycoplatyrine A, an unusual lycodine-piperidine adduct from Lycopodium platyrhizoma and the absolute configurations of lycoplanine D and lycogladine H. J Nat Prod 82:324–329.  https://doi.org/10.1021/acs.jnatprod.8b00754CrossRefGoogle Scholar
  168. 168.
    Szypuła W, Pietrosiuk A, Suchocki P, Olszowska O, Furmanowa M, Kazimierska O (2005) Somatic embryogenesis and in vitro culture of Huperzia selago shoots as a potential source of Huperzine A. Plant Sci 168:1443–1452.  https://doi.org/10.1016/j.plantsci.2004.12.021CrossRefGoogle Scholar
  169. 169.
    Szypuła WJ, Kiss AK, Pietrosiuk A, Świst M, Danikiewicz W, Olszowska O (2011) Determination of Huperzine A in Huperzia selago plants from wild population and obtained in in vitro culture by high performance liquid chromatography using a chaotropic mobile phase. Acta Chromatogr 23(2):339–352.  https://doi.org/10.1556/AChrom.23.2011.2.11CrossRefGoogle Scholar
  170. 170.
    Feng S, Xia Y, Han D, Zheng C, He X, Tang X, Bai D (2005) Synthesis and acetylcholinesterase inhibition of derivatives of Huperzine B. Bioorg Med Chem Lett 15:523–526.  https://doi.org/10.1016/j.bmcl.2004.11.060CrossRefPubMedGoogle Scholar
  171. 171.
    Xu H, Tang XC (1987) Cholinesterase inhibition by Huperzine-B. Acta Pharm Sin 8:18–22Google Scholar
  172. 172.
    Wang LS, Zhou J, Shao XM, Tang XC (2002) Huperzine A attenuates cognitive deficits and brain injury in neonatal rats after hypoxia–ischemia. Brain Res 949:162–170.  https://doi.org/10.1016/S0006-8993(02)02977-3CrossRefPubMedGoogle Scholar
  173. 173.
    Ortega MG, Agnese AM, Caberera JL (2004) Anticholinesterase activity in an alkaloid extract of Huperzia serrata. Phytomedicine 11:539–543.  https://doi.org/10.1016/j.phymed.2003.07.006CrossRefPubMedGoogle Scholar
  174. 174.
    Orhman I, Sener B, Choudhary MI, Khalid A (2004) Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J Ethnopharmacol 91:57–60.  https://doi.org/10.1016/j.jep.2003.11.016CrossRefGoogle Scholar
  175. 175.
    Szypuła WJ, Mistrzak P, Olszowska O (2013) A new and fast method to obtain in vitro cultures of Huperzia selago (Huperziaceae) sporophytes, a club moss which is a source of Huperzine A. Acta Soc Bot Pol 82:313–320.  https://doi.org/10.5586/asbp.2013.034CrossRefGoogle Scholar
  176. 176.
    Ishiuchi K, Park JJ, Long RM, Gang DR (2013) Production of Huperzine A and other Lycopodium alkaloids in Huperzia species grown under controlled conditions and in vitro. Phytochemistry 91:208–219.  https://doi.org/10.1016/j.phytochem.2012.11.012CrossRefPubMedGoogle Scholar
  177. 177.
    Lim WH, Goodger JQD, Field AR, Holtum JAM, Woodrow IE (2010) Huperzine alkaloids from Australasian and southeast Asian Huperzia. Pharm Biol 48:1073–1078.  https://doi.org/10.3109/13880209.2010.485619CrossRefPubMedGoogle Scholar
  178. 178.
    Borloz A, Marston A, Hostettmann K (2006) The determination of Huperzine A in European Lycopodiaceae species by HPLC-UV-MS. Phytochem Anal 17:332–336.  https://doi.org/10.1002/pca.922CrossRefPubMedGoogle Scholar
  179. 179.
    Valentine DH (1964) Lycopodiaceae L. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) Flora Europea, vol I. Cambridge University Press, CambridgeGoogle Scholar
  180. 180.
    Whittier DP, Webster TR (1986) Gametophytes of Lycopodium lucidulum from axenic culture. Am Fern J 76(2):48–55CrossRefGoogle Scholar
  181. 181.
    Whittier DP, Storchova H (2007) The gametophyte of Huperzia selago in culture. Am Fern J 97(3):149–154CrossRefGoogle Scholar
  182. 182.
    Callaghan TV, Svensson BM, Headley A (1986) The modular growth of Lycopodium annotinum. Fern Gaz 13(2):65–76Google Scholar
  183. 183.
    Freeberg JA, Wetmore RH (1957) Gametophytes of Lycopodium as grown in vitro. Phytomorphology 7:204–217Google Scholar
  184. 184.
    Freeberg JA (1957) The apogamous development of sporelings of Lycopodium cernuum L., L. complanatum var. Flabelliforme Fernald and L. selago L. in vitro. Phytomorphology 7:217–229Google Scholar
  185. 185.
    Freeberg JA (1962) Lycopodium prothalli and their endophytic fungi as studied in vitro. Am J Bot 49:530–535CrossRefGoogle Scholar
  186. 186.
    Whittier DP (1977) Gametophytes of Lycopodium obscurum as grown in axenic culture. Can J Bot 55:563–567.  https://doi.org/10.1139/b77-067CrossRefGoogle Scholar
  187. 187.
    Whittier DP (1981) Gametophytes of Lycopodium digitatum (formerly L. complanatum var. flalellifare) as grown in axenix culture. Bot Gaz 142:519–524.  https://doi.org/10.1086/337254CrossRefGoogle Scholar
  188. 188.
    Atmane N, Blervacq AS, Michaux–Ferriere N, Vasseur J (2000) Histological analysis of indirect somatic embryogenesis in the Marsh clubmoss Lycopodiella inundata (L.) Holub (Pteridophytes). Plant Sci 156:159–167.  https://doi.org/10.1016/S0168-9452(00)00244-2CrossRefPubMedGoogle Scholar
  189. 189.
    Bienaime C, Melin A, Bensaddek L, Attoumbré J, Nava-Saucedo E (2015) Effects of plant growth regulators on cell growth and alkaloids production by cell cultures of Lycopodiella inundata. Plant Cell Tissue Organ Cult 123(3):523–533.  https://doi.org/10.1007/s11240-015-0856-6CrossRefGoogle Scholar
  190. 190.
    Ma XQ, Gang DR (2008) In vitro production of Huperzine A, a promising drug candidate for Alzheimer’s disease. Phytochemistry 69:2022–2028.  https://doi.org/10.1016/j.phytochem.2008.04.017CrossRefPubMedGoogle Scholar
  191. 191.
    Williams S (1933) A contribution to the experimental morphology of Lycopodium Selago, with special reference to the development of adventitious shoots. Trans R Soc Edinb Earth Environ Sci 57(3):711–737.  https://doi.org/10.1017/S0080456800016938CrossRefGoogle Scholar
  192. 192.
    Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gaz 73:1–25.  https://doi.org/10.1086/332956CrossRefGoogle Scholar
  193. 193.
    Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107CrossRefGoogle Scholar
  194. 194.
    Zenkteler E (2006) Cykl życiowy paproci w warunkach eksperymentalnych. Wiad Bot 50(1/2):5–20Google Scholar
  195. 195.
    Bell PR (1981) The phase change in ferns. Acta Soc Bot Pol 50:307–314.  https://doi.org/10.5586/asbp.1981.050CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pharmaceutical Biology and Medicinal Plants Biotechnology, Faculty of PharmacyThe Medical University of WarsawWarsawPoland

Personalised recommendations