Advertisement

Propagation of Southern Sweet-Grass Using In Vitro Techniques as a Method for the Production of Plants Being a Source of Standardized Raw Material

  • Katarzyna Bączek
  • Anna Pawełczak
  • Ewelina Pióro-Jabrucka
  • Jarosław L. Przybył
  • Olga Kosakowska
  • Zenon WęglarzEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Southern sweet-grass, popularly called bison grass, is one of the few aromatic grasses used for industrial purposes. The plant, found only in the northeastern part of Europe, is considered as threatened with extinction, which in certain countries has already led to its legal protection. However, wild-growing plants are still harvested and used as a source of raw material, i.e., leaves applied for aromatization of alcoholic beverages, as well as in tobacco and food products. Therefore, it seems that attempts should be made to bring this species into cultivation. Such practices, focused mainly on the production of the required amount of leaves for industry, also promote the regeneration of plant populations on natural sites, made possible due to the lower price of raw material collected from cultivation. One of the biggest problems encountered when introducing wild-growing plants into cultivation is their propagation and especially low seed germination or viability. Propagation of southern sweet-grass using seeds is inefficient; their germination rate is very low and the process uneven. Moreover, this method provides highly diversified reproductive plant material, which in turn is not attractive for cultivation since the raw material obtained from such plants does not meet the expectations of industry regarding quality standards. Micropropagation of southern sweet-grass by indirect regeneration with the use of immature inflorescences as initial explants seems to be a promising source of reproductive material for establishing plantations. This method allows the cultivation of selected clones or forms of the desired chemical profile and in consequence provides raw material which exceeds the quality of raw material derived from wild-growing plants.

Keywords

Hierochloë australis Threats Plant development Intraspecific diversity Micropropagation Cultivation Environmental factors Coumarin 

Abbreviations

2,4-D

2,4-Dichlorophenoxyacetic acid

ABA

Abscisic acid

BA

6-Benzyladenine

DW

Dry weight

GA3

Gibberellic acid

HPLC

High-performance liquid chromatography

IAA

Indole-3-acetic acid

IBA

Indole-3-butyric acid

KNO3

Potassium nitrate

MAPs

Medicinal and aromatic plants

MS

Murashige and Skoog medium

NAA

1-Naphthaleneacetic acid

TDZ

Thidiazuron

WR

Without growth regulators

Notes

Acknowledgments

The work was supported by National Science Centre, project No. N N310 728440.

References

  1. 1.
    Rozporządzenie Ministra Środowiska z dnia 9 października 2014 r. w sprawie ochrony gatunkowej roślin (Dz. U. z 2014 r., poz. 1409)Google Scholar
  2. 2.
    Kozłowski S (2012) Trawy: właściwości, występowanie i wykorzystanie. Państwowe Wydawnictwo Rolnicze i Leśne, WarszawaGoogle Scholar
  3. 3.
    Falkowski M (1982) Trawy polskie. Państwowe Wydawnictwo Rolnicze i Leśne, WarsawGoogle Scholar
  4. 4.
    Podyma W, Bączek K, Angielczyk M, Przybył J, Węglarz Z (2010) The influence of shading on the yield and quality of southern sweet-grass (Hierochloë australis (Schrad.) Roem. et Schult.) raw material. Herba Pol 56(4):9–15Google Scholar
  5. 5.
    Falkowski M (1974) Trawy uprawne i dziko rosnące. Państwowe Wydawnictwo Rolnicze i Leśne, WarszawaGoogle Scholar
  6. 6.
    Gęsiński K (2007) Effect of the kind of habitat on flowering of Hierochloë repens (Host) Simonkai. Acta Agrobot 2:147–151Google Scholar
  7. 7.
    Connor HE (2012) Flowers and floral biology of the holy grasses (Hierochloë and Anthoxanthum: Aveneae, Graminae). Flora 207:323–333CrossRefGoogle Scholar
  8. 8.
    Bączek K, Angielczyk M, Przybył JL, Kosakowska O, Ejdys M, Węgarz Z (2015) Variability of southern sweet-grass (Hierochloë australis (Schrad.) Roem. et Schult.) wild growing populations occurring in eastern Poland. Herba Pol 61(3):23–36CrossRefGoogle Scholar
  9. 9.
    Gawłowska J, Sulma A, Wierzchowska-Renke K (1989) Turówka wonna (Hierochloë odorata) i turówka leśna (Hierochloë australis) – zasoby i zagrożenia. Chronimy Przyrodę Ojczystą 5,6:60–69Google Scholar
  10. 10.
    Matuszkiewicz W (2011) Przewodnik do oznaczania zbiorowisk roślinnych Polski. Wydawnictwo Naukowe PWN, WarszawaGoogle Scholar
  11. 11.
    Weimarck G (1981) Numerical analysis of the floristic composition of localities including Hierochloë (Poaceae) species in northern Europe. Vegetatio 44(2):101–135CrossRefGoogle Scholar
  12. 12.
    Ryser P, Eak L (2000) Consequences of phenotypic plasticity vs. intraspecific differences in leaf and root for acquisition of aboveground and belowground resources. Am J Bot 87:402–411PubMedCrossRefGoogle Scholar
  13. 13.
    Świejkowski L (1990) Rośliny lecznicze i przemysłowe. Klucz do oznaczania. Wydawnictwo Rynku Wewnętrznego – Libra, WarszawaGoogle Scholar
  14. 14.
    Jasnowska J, Jasnowski M, Radomski J, Friedrich S, Kowalski WWA (2008) Botanika. Wydawnictwo Brasika, SzczecinGoogle Scholar
  15. 15.
    Bączek K, Przybył JL, Kosakowska O, Węglarz Z (2019) Impact of shading on selected developmental, physiological and chemical parameters of southern sweet-grass (Hierochloë australis (Schrad.) Roem. et Schult.). Eur J Hortic Sci 84(2):99–105CrossRefGoogle Scholar
  16. 16.
    Kozłowski S, Goliński P, Swędrzyński A (1998) Trawy w barwnej fotografii i zwięzłym opisie ich specyficznych cech. Wydawnictwo Literackie – Parnas, InowrocławGoogle Scholar
  17. 17.
    Bączek K, Angielczyk M, Przybył JL, Ejdys M, Geszprych A, Węglarz Z (2014) Functional traits of selected clones of southern sweet-grass (Hierochloë australis (Schrad.) Roem. et Schult.). Herba Pol 60(3):23–33CrossRefGoogle Scholar
  18. 18.
    Bączek K, Pióro-Jabrucka E, Pawełczak A, Węglarz Z (2016) Influence of storage and pre-sowing treatment of southern sweet-grass seeds on their germination and initial growth of seedlings. Herba Pol 62(2):31–41CrossRefGoogle Scholar
  19. 19.
    PrzybyłJL PE, Angielczyk M, Bączek K, Podyma W, Węglarz Z (2011) Intraspecific variability of southern sweet-grass (Hierochloë australis (Schrad.) Roem. et Schult.) wild growing in Poland. Acta Hortic 925:89–95CrossRefGoogle Scholar
  20. 20.
    Saatkamp A, Affre L, Dutoit T, Poschlod P (2011) Germination traits explain soil seed persistence across species: the case of Mediterranean annual plants in cereal fields. Ann Bot 107(3):415–426PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Venable DL, Lawlor L (1980) Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia 46:272–282PubMedCrossRefGoogle Scholar
  22. 22.
    Olivieri I, Berger A (1985) Seed dimorphism for dispersal: physiological, genetic and demographical aspects. In: Jacquard P (ed) Genetic differentiation and dispersal in plants. Springer, Berlin/HeidelbergGoogle Scholar
  23. 23.
    Czarnecka B (1997) Strategie adaptacyjne roślin a skład gatunkowy fitocenoz. Wiad Botaniczne 41(3/4):33–42Google Scholar
  24. 24.
    Anderson TM, Schütz M, Risch AC (2012) Seed germination cues and the importance of the soil seed bank across an environmental gradient in the Serengeti. Oikos 121:306–312CrossRefGoogle Scholar
  25. 25.
    Jennings DE, Rohr J (2011) A review of the conservation threats to carnivorous plants. Biol Conserv 144(5):1356–1363CrossRefGoogle Scholar
  26. 26.
    Sinha NK, Handoo JK, Srivastava AK (1998) Effect of pretreatment and low temperature on mobilization efficiency of maize genotypes. J Appl Biol 8(1):20–23Google Scholar
  27. 27.
    Bączek K, Angielczyk M, Mosakowska K, Kosakowska O, Węglarz Z (2014) Setting of southern sweet-grass plantation with stem cuttings obtained by division of maternal plants. Herba Pol 60(4):9–21CrossRefGoogle Scholar
  28. 28.
    Rout JR, Lucas WJ (1996) Characterization and manipulation of embryogenic response from in vitro cultured immature inflorescences of rice (Oryza sativa L.). Planta 198:127–138CrossRefGoogle Scholar
  29. 29.
    Kim HS, Zhang G, Juvik JA, Widholm JM (2010) Miscanthus x giganteus plant regeneration: effect of callus type, ages and culture methods on regeneration competence. GCB Bioenergy 2:192–200Google Scholar
  30. 30.
    He W, Guo B, Fan P, Guo L, Wei Y (2015) In vitro propagation of a poisonous plant Oxytropis glabra (Lam.) DC. Plant Cell Tissue Organ Cult 120:49–55CrossRefGoogle Scholar
  31. 31.
    Datta MM, Majumder A, Jha S (2006) Organogenesis and plant regeneration in Taxus wallichiana (Zucc.). Plant Cell Rep 25:11–18PubMedCrossRefGoogle Scholar
  32. 32.
    Elangomathavan R, Prakash S, Kathiravan K, Seshadri S, Ignacimuthu S (2003) High frequency in vitro propagation of Kidney Tea Plant. Plant Cell Tissue Organ Cult 72:83–86CrossRefGoogle Scholar
  33. 33.
    Johnson TS, Narayan SB, Narayana DBA (1997) Rapid in vitro propagation of Saussurea lappa, an endangered medicinal plant, through multiple shoot culture. In Vitro Cell Dev Biol Plant 33:128–130CrossRefGoogle Scholar
  34. 34.
    Trigiano RN, Gray DJ, Conger BW, McDaniel JK (1989) Origin of direct somatic embryos from cultured leaf segments of Dactylis glomerata. Bot Gaz 150(1):72–77CrossRefGoogle Scholar
  35. 35.
    Păcurar DI, Thordal-Christensen H, Nielsen KK, Lenk I (2008) A high throughput Agrobacterium-mediated transformation system for grass model species Brachypodium distachyon L. Transgenic Res 17:965–975PubMedCrossRefGoogle Scholar
  36. 36.
    Vikrant RA (2003) Somatic embryogenesis from mesocotyl and leaf-base segments of Paspalum scrobiculatum L., a minor millet. In Vitro Cell Dev Biol Plant 39:485–489CrossRefGoogle Scholar
  37. 37.
    Arockiasamy S, Sahaya Rani S, Ignacimuthu S, Melhias G (2006) Efficient protocols for in vitro regeneration of Pennisetum glaucum (L) Br. Indian J Exp Biol 44:757–761PubMedGoogle Scholar
  38. 38.
    Rostami H, Giri A, Nejad ASM, Moslem A (2013) Optimization of multiple shoot induction and plant regeneration in Indian barley (Hordeum sativum) cultivars using mature embryos. Saudi J Biol Sci 20:251–255PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Abdelsalam A, Chowdbury K, El-Bakry A (2018) Efficient morphogenesis from in vitro cultures of medicinal plant Cymbopogon schoenanthus. Plant Tissue Cult Biotechnol 28(2):147–160CrossRefGoogle Scholar
  40. 40.
    Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012) Seasonal influences on in vitro bud break in Dendrocalamus hamiltonii Arn. Ex Munro nodal explants and effect of culture microenvironment on large scale shoot multiplication and plantlet regeneration. Indian J Plant Physiol 17(1):9–21Google Scholar
  41. 41.
    Shimelis D, Bantte K, Feyssa T (2014) Interaction effects of 6-benzylaminopurine and kinetin on in vitro shoot multiplication of two sugarcane (Saccharum officinarum L.) genotypes. Adv Crop Sci Technol 2(4):1–5Google Scholar
  42. 42.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15(3):473–497CrossRefGoogle Scholar
  43. 43.
    Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47CrossRefGoogle Scholar
  44. 44.
    Głowacka K, Jeżowski S, Kaczmarek Z (2010) The effect of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tissue Organ Cult 102:79–86CrossRefGoogle Scholar
  45. 45.
    Creemers-Molenaar J, Loeffen JPM, Van der Valk P (1988) The effect of 2,4-dichlorophenoxyacetic acid and donor plant environment on plant regeneration from immature inflorescence-derived callus of Lolium perenne L. and Lolium multiflorum L. Plant Sci 57(2):165–172CrossRefGoogle Scholar
  46. 46.
    Dhandapani M, Hong S-B, Aswath CR, Kim DH (2008) Regeneration of zoysia grass (Zoyisia matrella L. Merr.) from young inflorescence and stem nodes. In Vitro Cell Dev Biol Plant 44:8–13CrossRefGoogle Scholar
  47. 47.
    Bekele E, Klöck G, Zimmerman U (1995) Somatic embryogenesis and plant regeneration from leaf and root explants and from seeds of Eragrostis tef (Gramineae). Hereditas 123:183–189CrossRefGoogle Scholar
  48. 48.
    Francis D, Sorrel DA (2001) The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul 33(1):1–12CrossRefGoogle Scholar
  49. 49.
    Aguado-Santacruz AG, Cabrera-Ponce JL, Olalde-Portugal V, Sanchez-Gonzalez MAR, Marquez-Guzman J, Herrera-Estrella L (2001) Tissue culture and plant regeneration of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. ex Steud. In Vitro Cell Dev Biol Plant 37:182–189CrossRefGoogle Scholar
  50. 50.
    Wang W, Cui SX, Zhang CL (2001) Plant regeneration from embryogenic suspension cultures of dune reed. Plant Cell Tissue Organ Cult 67:11–17CrossRefGoogle Scholar
  51. 51.
    Pantha P, Ponniah SK, Ntamatungiro S, Monoharan M (2016) Improved embryogenic callus induction in big bluestem (Andropogon gerardii Vitman), a potential bioenergy feedstock. Afr J Biotechnol 15(39):2166–2171CrossRefGoogle Scholar
  52. 52.
    Barampuram S, Chung BY, Lee SS, An BH, Lee EM, Cho J-Y (2009) Development of an embryogenic callus induction method for centipede grass (Eremochloa ophiuroides Munro) and subsequent plant regeneration. In Vitro Cell Dev Biol Plant 45:155–161CrossRefGoogle Scholar
  53. 53.
    Ceasar SA, Ignacimuthu S (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explant of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 44:427–435CrossRefGoogle Scholar
  54. 54.
    Samantaray S, Rout GR, Das P (1997) Regeneration of plants via somatic embryogenesis from leaf base and leaf-tip segments of Echinochloa colona. Plant Cell Tissue Organ Cult 47:119–125CrossRefGoogle Scholar
  55. 55.
    Dagla HR, Shekhawat NS (2005) Plant regeneration from tissue culture of Chloris virgata: a salt tolerant desert grass. Indian J Biotechnol 4:400–403Google Scholar
  56. 56.
    Torres KC (1989) Tissue culture techniques for horticultural crops. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  57. 57.
    Ziauddin A, Kasha KJ (1990) Long-term callus cultures of diploid barley (Hordeum vulgare). I. Effect of auxins on chromosomal status of cultures and regeneration of plants. Euphytica 48(3):279–286CrossRefGoogle Scholar
  58. 58.
    Finch RP, Based A, Slamet IH, Cocking EC (1992) In vitro shoot culture of wild Oryzae and other grass species. Plant Cell Tissue Organ Cult 30:31–39CrossRefGoogle Scholar
  59. 59.
    Mizukami H, Okada Y, Okashi H (1989) Clonal propagation of lemon grass (Cymbopogon citratus Stapf) through shoot tip culture. Plant Tissue Cult Lett 6(1):22–24CrossRefGoogle Scholar
  60. 60.
    Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120CrossRefGoogle Scholar
  61. 61.
    Wierzchowska-Renke K (1972) Uwagi o suszeniu turówki wonnej (Hierochloë odorata Wahlb.) i turówki leśnej (Hierochloë australis Roem. et Schult.). Zielarski Biuletyn Informacyjny 1:8–10Google Scholar
  62. 62.
    Abrams MD, Kloeppel BD, Kubiske ME (1992) Ecophysiological and morphological responses to shade in two contrasting ecotypes of Prunus serotina. Tree Physiol 10:343–355PubMedCrossRefGoogle Scholar
  63. 63.
    Fini A, Ferrini F, Frangi P, Amoroso G, Giordano C (2010) Growth, leaf gas exchange and leaf anatomy of three ornamental shrubs grown under different light intensities. Eur J Hortic Sci 75(3):111–117Google Scholar
  64. 64.
    Vialet-Chabrand S, Matthews JSA, Simkin AJ, Raines CA, Lowson T (2017) Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol 173:2163–2179PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Rezai S, Etemadi N, Nikbakht A, Yousefi M, Majidi MM (2018) Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in sage (Salvia officinalis L.). Hortic Sci Technol 36:46–57Google Scholar
  66. 66.
    Yang X, Ye XF, Liu GS, Wei HQ, Wang Y (2007) Effects of light intensity on morphological and physiological characteristics of tobacco seedlings. Chin J Appl Ecol 18:2642–2645Google Scholar
  67. 67.
    Czeczuga B (1987) Carotenoid contents in leaves grown under various light intensities. Biochem Syst Ecol 15:523–527CrossRefGoogle Scholar
  68. 68.
    Di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. New York, Springer Science+Business MediaGoogle Scholar
  69. 69.
    Towers GHN (1987) Fungicidal activity of naturally occurring photosensitizers. ACS Symp Ser 339:231–240CrossRefGoogle Scholar
  70. 70.
    Fowlks WL, Griffith DG, Oginsky EL (1958) Photosensitization of bacteria by furanocoumarins and related compounds. Nature 22:571–572CrossRefGoogle Scholar
  71. 71.
    Roshchina VV (2003) Autofluorescence of plant secreting cells as biosensor and bioindicator reaction. J Fluoresc 13(5):403–420CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katarzyna Bączek
    • 1
  • Anna Pawełczak
    • 1
  • Ewelina Pióro-Jabrucka
    • 1
  • Jarosław L. Przybył
    • 1
  • Olga Kosakowska
    • 1
  • Zenon Węglarz
    • 1
    Email author
  1. 1.Laboratory of New Herbal Products, Department of Vegetable and Medicinal PlantsWarsaw University of Life Sciences – SGGWWarsawPoland

Personalised recommendations