Advertisement

Perovskite Materials in Photovoltaics

  • Khursheed Ahmad
  • Shaikh M. MobinEmail author
Living reference work entry
  • 11 Downloads

Abstract

In the past few years, the synthesis and development of perovskite materials have been focused due to the excellent physiochemical properties of the perovskites. The organic-inorganic hybrid metal halide perovskites have been proven a most efficient light harvester or light absorber for the development of perovskite solar cells. The solar cells based on these organic-inorganic hybrid metal halide perovskites have led the power conversion efficiency to a level needed for commercialization which makes them superior among thin-film solar cells. In 2017, organic-inorganic hybrid metal halide perovskites have crossed the power conversion efficiency of 23% which is believed to be due to the long charge diffusion length, tunable bandgap, controlled electron/hole transport behavior, and high absorption coefficient. However, these perovskite solar cells suffer from serious drawbacks such as low stability and presence of highly toxic lead (Pb2+). Currently, the researchers have now focused to develop the strategies toward the fabrication of lead-free perovskite solar cells with high device stability and performance in aerobic condition.

References

  1. 1.
    Kitano M, Hara M (2010) Heterogeneous photocatalytic cleavage of water. J Mater Chem 20:627–641CrossRefGoogle Scholar
  2. 2.
    Ahmad K, Ansari SN, Natarajan K, Mobin SM (2019) A two-step modified deposition method based (CH3NH3)3Bi2I9 perovskite: lead free, highly stable and enhanced photovoltaic performance. Chem Electro Chem 6:1–8Google Scholar
  3. 3.
    Sum TC, Mathews N (2014) Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci 7:2518–2534CrossRefGoogle Scholar
  4. 4.
    Ahmad K, Mohammad A, Mathur P, Mobin SM (2016) Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics. Electrochim Acta 215:435–446CrossRefGoogle Scholar
  5. 5.
    Reddy VS, Kaushik SC, Ranjan KR, Tyagi SK (2013) State-of-the-art of solar thermal power plants. Renew Sust Energ Rev 27:258–273CrossRefGoogle Scholar
  6. 6.
    Chen GY, Seo J, Yang CH, Prasad PN (2013) Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 42:8304–8338CrossRefGoogle Scholar
  7. 7.
    O’Regan B, Grätzel M (1991) A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  8. 8.
    Chen Y-Z, Wu R-J, Lin LY, Chang WC (2019) Novel synthesis of popcorn-like TiO2 light scatterers using a facile solution method for efficient dye-sensitized solar cells. J Power Sources 413:384–390CrossRefGoogle Scholar
  9. 9.
    Prabavathy N, Balasundaraprabhu R, Balaji RG, Malikaramage AU, Prasanna S, Sivakumaran K, Kumarad GRA, Rajapakse RMG, Velauthapillai D (2019) Investigations on the photo catalytic activity of calcium doped TiO2 photo electrode for enhanced efficiency of anthocyanins based dye sensitized solar cells. J Photochem Photobiol A Chem 377:43–57CrossRefGoogle Scholar
  10. 10.
    Motlak M, Hamza AM, Hammed MG, Barakat NAM (2019) Cd-doped TiO2 nanofibers as effective working electrode for the dye sensitized solar cells. Mater Lett 246:206–209CrossRefGoogle Scholar
  11. 11.
    Wang C-T, Wang W-P, Lin H-S (2018) Niobium and iron co-doped titania nanobelts for improving charge collection in dye-sensitized TiO2 solar cells. Ceram Int 44:18032–18038CrossRefGoogle Scholar
  12. 12.
    Shakir S, Abd-ur-Rehman HM, Yunus K, Iwamoto M, Periasamy V (2018) Fabrication of un-doped and magnesium doped TiO2 films by aerosol assisted chemical vapor deposition for dye sensitized solar cells. J Alloy Compound 737:740–747CrossRefGoogle Scholar
  13. 13.
    Hao NH, Gyawali G, Hoon JS, Sekino T, Lee SW (2018) Cr-doped TiO2 nanotubes with a double-layer model: an effective way to improve the efficiency of dye-sensitized solar cells. Appl Surf Sci 458:523–528CrossRefGoogle Scholar
  14. 14.
    Dong YX, Jin B, Lee SH, Wang XL, Jin EM, Jeong SM (2019) One-step hydrothermal synthesis of Ag decorated TiO2 nanoparticles for 2 dye-sensitized solar cell application. Renew Energy 135:1207–1212CrossRefGoogle Scholar
  15. 15.
    Zhang X, Liu F, Huang QL, Zhou G, Wang Z-S (2011) Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination. J Phys Chem C 115:12665–12671CrossRefGoogle Scholar
  16. 16.
    Tran VA, Truong TT, Phan TAP, Nguyen TN, Huynh TV, Agrestic A, Pescetellic S, Le TK, Carlo AD, Lund T, Le S-N, Nguyen PT (2017) Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells. Appl Surf Sci 399:515–522CrossRefGoogle Scholar
  17. 17.
    Shalini S, Balasundaraprabhu R, Kumar TS, Muthukumarasamy N, Prasanna S, Sivakumaran K, Kannan MD (2018) Enhanced performance of sodium doped TiO2 nanorods based dye sensitized solar cells sensitized with extract from petals of Hibiscus sabdariffa (Roselle). Mater Lett 221:192–195CrossRefGoogle Scholar
  18. 18.
    Xiang P, Lv F, Xiao T, Jiang L, Tan X, Shu T (2018) Improved performance of quasi-solid-state dye-sensitized solar cells based on iodine-doped TiO2 spheres photoanodes. J Alloy Compound 741:1142–1147CrossRefGoogle Scholar
  19. 19.
    Ganesh RS, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Shimura Y, Hayakawa Y (2018) Enhanced photon collection of high surface area carbonate-doped mesoporous TiO2 nanospheres for dye sensitized solar cells applications. Mater Res Bull 101:353–362CrossRefGoogle Scholar
  20. 20.
    Lu WH, Chou C-S, Chen C-Y, Wu P (2017) Preparation of Zr-doped mesoporous TiO2 particles and their applications in the novel working electrode of a dye-sensitized solar cell. Adv Powder Technol 28:2186–2197CrossRefGoogle Scholar
  21. 21.
    Deng J, Wang M, Fang J, Song X, Yang Z, Yuan Z (2019) Synthesis of Zn-doped TiO2 Nano-particles using metal Ti and Zn as raw materials and application in quantum dot sensitized solar cells. J Alloy Compound 791:371–379CrossRefGoogle Scholar
  22. 22.
    Colombo A, Dragonetti C, Roberto D, Ugo R, Manfredi N, Manca P, Abbotto A, Giustina GD, Brusatin G (2019) A carbon doped anatase TiO2 as a promising semiconducting layer in Ru-dyes based dye-sensitized solar cells. Inorg Chim Acta 489:263–268CrossRefGoogle Scholar
  23. 23.
    Hajizadeh-Oghaz M (2019) Synthesis and characterization of Nb-La Co-doped TiO2 nanoparticles by sol-gel process for dye-sensitized solar cells. Ceram Int 45:6994–7000CrossRefGoogle Scholar
  24. 24.
    Ahmad K, Ansari SN, Natarajan K, Mobin SM (2018) Design and synthesis of 1D-polymeric chain based [(CH3NH3)3Bi2Cl9]n perovskite: a new light absorber material for lead free perovskite solar cells. ACS Appl Energy Mater 1:2405–2409CrossRefGoogle Scholar
  25. 25.
    Ahmad K, Mobin SM (2017) Graphene oxide based planar heterojunction perovskite solar cell under ambient condition. New J Chem 41:14253–14258CrossRefGoogle Scholar
  26. 26.
    Ahmad K, Mohammad A, Mobin SM (2017) Hydrothermally grown α-MnO2 nanorods as highly efficient low cost counter-electrode material for dye-sensitized solar cells and electrochemical sensing applications. Electrochim Acta 252:549–557CrossRefGoogle Scholar
  27. 27.
    Guo Q, Xu Y, Xiao B, Zhang B, Zhou E, Wang F, Bai Y, Hayat T, Alsaedi A, Tan Z (2017) Effect of energy alignment, electron mobility, and film morphology of perylene diimide based polymers as electron transport layer on the performance of perovskite solar cells. ACS Appl Mater Interfaces 9:10983–10991CrossRefGoogle Scholar
  28. 28.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRefGoogle Scholar
  29. 29.
    Lin J, Hu J, Qiu C, Huang H, Chen L, Xie Y, Zhang Z, Lin H, Wang X (2019) In situ hydrothermal etching fabrication of CaTiO3 on TiO2 nanosheets with heterojunction effects to enhance CO2 adsorption and photocatalytic reduction. Catal Sci Technol 9:336–346CrossRefGoogle Scholar
  30. 30.
    Fergus JW (2017) Perovskite oxides for semiconductor-based gas sensors. Sensors Actuators B Chem 123:1169–1179CrossRefGoogle Scholar
  31. 31.
    Weber D (1978) CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z Naturforsch B 33:1443–1445CrossRefGoogle Scholar
  32. 32.
    Konstantakou M, Stergiopoulos T (2017) A critical review on tin halide perovskite solar cells. J Mater Chem A 5:11518–11549CrossRefGoogle Scholar
  33. 33.
    Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26:1584–1589CrossRefGoogle Scholar
  34. 34.
    Wehrenfennig C, Liu M, Snaith HJ, Johnston MB, Herz LM (2014) Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ Sci 7:2269–2275CrossRefGoogle Scholar
  35. 35.
    Gratzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842CrossRefGoogle Scholar
  36. 36.
    Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093CrossRefGoogle Scholar
  37. 37.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRefGoogle Scholar
  38. 38.
    Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X, Zhao X (2014) Perovskite solar cell with an efficient TiO2 compact film. ACS Appl Mater Interfaces 6(18):15959–15965CrossRefGoogle Scholar
  39. 39.
    Ma J, Guo X, Zhou L, Lin Z, Zhang C, Yang Z, Lu G, Chang J, Hao Y (2018) Enhanced planar perovskite solar cell performance via contact passivation of TiO2/perovskite interface with NaCl doping approach. ACS Appl Energy Mater 1(8):3826–3834CrossRefGoogle Scholar
  40. 40.
    Guo Z, Liguo G, Zhang C, Xu Z, Ma T (2018) Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells. J Mater Chem A 6:4572–4589CrossRefGoogle Scholar
  41. 41.
    Lv M, Lv W, Fang X, Sun P, Lin B, Zhang S, Xu X, Ding J, Yuan N (2016) Performance enhancement of perovskite solar cells with a modified TiO2 electron transport layer using Zn-based additives. RSC Adv 6:35044–35050CrossRefGoogle Scholar
  42. 42.
    Peng G, Wu J, Wu S, Xu X, Ellis JE, Xu G, Star A, Gao D (2016) Perovskite solar cells based on bottom-fused TiO2 nanocones. J Mater Chem A 4:1520–1530CrossRefGoogle Scholar
  43. 43.
    Liu D, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8:133–138CrossRefGoogle Scholar
  44. 44.
    Jeong S, Seo S, Park H, Shin H (2019) Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun 55:2433–2436CrossRefGoogle Scholar
  45. 45.
    Jung K-H, Seo J-Y, Lee S, Shin H, Park N-G (2017) Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. J Mater Chem A 5:24790–24803CrossRefGoogle Scholar
  46. 46.
    Wang S, Zhu Y, Liu B, Wang C, Ma R (2019) Introduction of carbon nanodots into SnO2 electron transport layer for efficient and UV stable planar perovskite solar cells. J Mater Chem A 7:5353–5362CrossRefGoogle Scholar
  47. 47.
    Ding B, Huang S-Y, Chu QQ, Li Y, Li C-X, Li C-J, Yang G-J (2018) Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J Mater Chem A 6:10233–10242CrossRefGoogle Scholar
  48. 48.
    Mali SS, Patil JV, Kim H, Hong CK (2018) Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale 10:8275–8284CrossRefGoogle Scholar
  49. 49.
    Zhong M, Liang Y, Zhang J, Wei Z, Li Q, Xu D (2019) Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2layer as the electron transport layer. J Mater Chem A 7:6659–6664CrossRefGoogle Scholar
  50. 50.
    Mahmood K, Swain BS, Kirmani AR, Amassian A (2015) Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material. J Mater Chem A 3:9051–9057CrossRefGoogle Scholar
  51. 51.
    Jiang J, Wang S, Jia X, Fang X, Zhang S, Zhang J, Liu W, Ding J, Yuan N (2018) Totally room-temperature solution-processing method for fabricating flexible perovskite solar cells using an Nb2O5-TiO2 electron transport layer. RSC Adv 8:12823–12831CrossRefGoogle Scholar
  52. 52.
    Kulkarni A, Praveen CS, Sethi YA, Panmand RP, Arbuj SS, Naik SD, Ghule AV, Kale BB (2017) Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans 46:14859–14868CrossRefGoogle Scholar
  53. 53.
    Pérez-Tomas A, Xie H, Wang Z, Kim H-S, Shirley I, Turren-Cruz H-S, Morales-Melgares A, Saliba B, Tanenbaum D, Saliba M, Zakeeruddin SM, Gratzel M, Hagfeldt A, Lira-Cantu M (2019) PbZrTiO3 ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells. Sustain Energy Fuels 3:382–389CrossRefGoogle Scholar
  54. 54.
    Liu X, Chueh C-C, Zhu Z, Byeok S, Sun Y, Jen AK-Y (2016) Highly crystalline Zn2SnO4 nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells. J Mater Chem A 4:15294–15301CrossRefGoogle Scholar
  55. 55.
    Mali SS, Shim CS, Kim H, Hong CK (2016) Reduced graphene oxide (rGO) grafted zinc stannate (Zn2SnO4) nanofiber scaffolds for highly efficient mixed-halide perovskite solar cells. J Mater Chem A 4:12158–12169CrossRefGoogle Scholar
  56. 56.
    Li Y, Zhao L, Xiao M, Huang Y, Dong B, Xu Z, Wan L, Li W, Wang S (2018) Synergic effects of up conversion nanoparticles NaYbF4:Ho3+ and ZrO2 enhanced the efficiency in hole-conductor-free perovskite solar cells. Nanoscale 10:22003–22011CrossRefGoogle Scholar
  57. 57.
    Zhang Y, Wang J, Liu X, Li W, Huang F, Peng Y, Zhong J, Cheng Y, Ku Z (2017) Enhancing the performance and stability of carbon-based perovskite solar cells by the cold isostatic pressing method. RSC Adv 7:48958–48961CrossRefGoogle Scholar
  58. 58.
    Mahmood K, Sarwar S, Mehran MT (2017) Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv 7:17044–17062CrossRefGoogle Scholar
  59. 59.
    Im JH, Jang IH, Pellet N, Grätzel M, Park N-G (2014) Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol 9:927–932CrossRefGoogle Scholar
  60. 60.
    Tai Q, You P, Sang H, Liu Z, Hu C, Chan HLW, Yan F (2016) Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat Commun 7:11105CrossRefGoogle Scholar
  61. 61.
    Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad AA, Sadhanala A, Eperon GE, Pathak SK, Johnston MB, Petrozza A, Herza LM, Snaith HJ (2014) Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7:3061–3068CrossRefGoogle Scholar
  62. 62.
    Eckhardt K, Bon V, Getzschmann J, Grothe J, Wasser FM, Kaskel S (2016) Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics. Chem Commun 52:3058–3060CrossRefGoogle Scholar
  63. 63.
    Singh T, Kulkarni A, Ikegami M, Miyasaka T (2016) Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3 Bi2I9 for photovoltaic applications. ACS Appl Mater Interfaces 8:14542–14547CrossRefGoogle Scholar
  64. 64.
    Shin J, Kim M, Jung S, Kim CS, Park J, Song S, Chung K-B, Jin S-H, Lee JH, Song M (2018) Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Res 11:6283–6293CrossRefGoogle Scholar
  65. 65.
    Zhang Z, Li X, Xia X, Wang Z, Huang Z, Lei B, Gao Y (2017) High-quality (CH3NH3)3Bi2I9 film-based solar cells: pushing efficiency up to 1.64%. J Phys Chem Lett 8:4300–4307CrossRefGoogle Scholar
  66. 66.
    Dhruba B, Shirai Y, Yanagida M, Miyano K (2019) Tailoring the film morphology and interface band offset of cesium bismuth iodide-based Pb-free perovskite solar cells. J Mater Chem C 7:8335–8343Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Discipline of ChemistryIndian Institute of Technology IndoreIndoreIndia
  2. 2.Discipline of Biosciences and Bio-Medical EngineeringIndian Institute of Technology IndoreIndoreIndia
  3. 3.Discipline of Metallurgy Engineering and Material ScienceIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations