Skip to main content

Recent Advances in Thermoplastic Starch Biodegradable Nanocomposites

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

The use of polymers capable of being degraded by the action of microorganisms and/or enzymes without causing harmful effects is a strategy in the management of waste and environmental care. Agro-polymers have begun to play a significant role among researchers and industry, since it has been found that these materials are Biodegradable and eco-friendly. Starch is a polymer belonging to the group of polysaccharides, which is produced by almost all plants using it as energy storage. Depending on the botanical origin of the plant, starch granules can have different shapes (spheres, platelets, polygonal) and size (from 0.5 to 175 μm). Its chemical composition consists of two components: amylose, composed of 1,4-α-D bonds of glucose in straight chains, and amylopectin, in which the glucose chains are highly branched. Starch is a naturally renewable carbohydrate polymer, abundant, and inexpensive, so it is mostly used as raw material in the production of Biodegradable polymers. However, since its thermal degradation and melting are overlapping processes, the structure of native starch must be physically modified by disrupting the crystalline structure of the granule, either by mechanical stress, pressure, or temperature, in the presence of a plasticizer. This process is called “gelatinization” and the resulting product is known as “Thermoplastic starch (TPS)”. This name is deduced by its processability characteristics similar to those of conventional thermoplastic polymers. The amount of plasticizer and its chemical nature exert a strong influence on the physical properties of starch in two aspects: (i) controlling its destructuring and depolymerization minimizing degradation during Processing; (ii) affecting the final properties of the TPS, such as the glass transition temperature and mechanical properties. Starch has poor mechanical and barrier properties and is susceptible to changes in properties as a function of ambient humidity. The mechanical properties of Thermoplastic starch change as a function of time after gelatinization due to molecular reorganization, which depends on the Processing method and storage conditions. When samples are stored below the Tg, they can suffer physical aging with densification of material. When T>Tg, samples develop retrogradation, increasing their crystallinity. Physical aging is observed for materials with plasticizer content less than 25% by weight. This phenomenon induces an increase in the strength of the material and a decrease in the deformation at break. Same strategies can be evaluated to reduce the disadvantages described above. Starch can be chemically modified producing the reaction of native starch with chemical reagents that introduce new functional groups, depending on the properties to be improved. Also, the incorporation of nanoclays to the polymer blends produces enhancements in the mechanical and barrier properties, driving to materials with high performance/cost ratio.

The aim of this chapter is to evidence the advantages and disadvantages of the use of Thermoplastic starch as a replacement for conventional polymers, the strategies to improve its performance and also the use of nanoclays as fillers to improve the final properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Madhumitha G, Fowsiya J, Mohana Roopan S, Thakur VK (2018) Recent advances in starch–clay nanocomposites. Int J Polym Anal Charact 23:331–345. https://doi.org/10.1080/1023666X.2018.1447260

    Article  CAS  Google Scholar 

  2. Ren J, Dang KM, Pollet E, Avérous L (2018) Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nanoclay content. Polymers (Basel) 10:1–15. https://doi.org/10.3390/polym10080808

    Article  CAS  Google Scholar 

  3. Jiang S, Liu C, Wang X, Xiong L, Sun Q (2016) Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT- Food Sci Technol 69:251–257. https://doi.org/10.1016/j.lwt.2016.01.053

    Article  CAS  Google Scholar 

  4. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474. https://doi.org/10.1016/j.foodchem.2004.10.024

    Article  CAS  Google Scholar 

  5. Pandey JK, Pratheep Kumar A, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526. https://doi.org/10.1166/jnn.2005.111

    Article  CAS  Google Scholar 

  6. Dufresne A, Medeiros E, Orts WJ (2008) Starch-based nanocomposites. In: Starches: characterization, properties, and applications. CRC Press Taylor & Francis Group, New York, USA. pp 205–246

    Google Scholar 

  7. Whistler R (1984) Chapter I - History and Future Expectation of Starch Use. In: Food Science and Technology. Academic Press, San Diego, USA. pp 1–9

    Google Scholar 

  8. Shogren R, Wood D, Orts W, Glenn G (2019) Plant-based materials and transitioning to a circular economy. Sustainable Prod Consumption 19:194–215

    Article  Google Scholar 

  9. Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267

    Article  CAS  Google Scholar 

  10. Halley P, Avérous L (2014) Chapter I: Introduction. In: Starch Polymers: from generic engineering to green applications. Elsevier San Diego, USA. pp 3–10

    Google Scholar 

  11. Kakkar P, Madhan B, Shanmugam G (2014) Extraction and characterization of keratin from bovine hoof: a potential material for biomedical applications. Springerplus 3:596. https://doi.org/10.1186/2193-1801-3-596

    Article  CAS  Google Scholar 

  12. Bello Perez LA, Agama-Acevedo E (2017) Starch-based materials in food packaging. In: Villar MA, Barbosa SE, LAC MAG, Lopez OV (eds) Starch-based materials in food packaging. Elsevier, San Diego, USA

    Google Scholar 

  13. Debiagi F, Mello LRPF, Mali S (2017) Thermoplastic starch-based blends: processing, structural, and final properties. In: Starch-based materials in food packaging: processing, characterization and applications. Elsevier, San Diego, USA, pp 153–186

    Chapter  Google Scholar 

  14. Bello Perez L, Agama-Acevedo E (2017) Chapter I: Starch. In: Starch-based materials in food packaging: processing, characterization and applications. Academic Press, San Diego, USA. pp 1–18

    Google Scholar 

  15. Silveira Hornung P (2018) Brazilian yam and turmeric native starches: characterization, modification and application. Starch Sources Characterization and Application View project Dioscoreaceas starches characterization and applications View project. https://doi.org/10.13140/RG.2.2.15569.63849

  16. Mohammadi Nafchi A, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch-Starke 65:61–72. https://doi.org/10.1002/star.201200201

    Article  CAS  Google Scholar 

  17. Thomas S, Visak PM, Mathew APP (2013) Advances in natural polymers : composites and nanocomposites. Springer, New York

    Book  Google Scholar 

  18. Zhu F, Xie Q (2018) Chapter 1 – Structure and Physicochemical Properties of Starch. In: Physical modifications of starch. Springer, Singapore. pp 1:14

    Google Scholar 

  19. Chen P, Yu L, Simon G, Petinakis E, Dean K, Chen L (2009) Morphologies and microstructures of cornstarches with different amylose-amylopectin ratios studied by confocal laser scanning microscope. J Cereal Sci 50:241–247. https://doi.org/10.1016/j.jcs.2009.06.001

    Article  CAS  Google Scholar 

  20. Khan B, Bilal Khan Niazi M, Samin G, Jahan Z (2017) Thermoplastic starch: a possible biodegradable food packaging materia – a review. J Food Process Eng 40: e12447

    Article  Google Scholar 

  21. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112. https://doi.org/10.1016/S0141-8130(98)00040-3

    Article  Google Scholar 

  22. Tester RF, Karkalas J, Qi X (2004) Starch – composition, fine structure and architecture. J Cereal Sci 39:151–165. https://doi.org/10.1016/j.jcs.2003.12.001

    Article  CAS  Google Scholar 

  23. van Soest JJG, Vliegenthart JFG (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol 15:208–213

    Article  Google Scholar 

  24. Ojeda T (2016) Polymers and the environment. INTECH i:13. https://doi.org/10.5772/57353

    Article  Google Scholar 

  25. Ma XF, Yu JG, Wang N (2007) Fly ash-reinforced thermoplastic starch composites. Carbohydr Polym 67:32–39. https://doi.org/10.1016/j.carbpol.2006.04.012

    Article  CAS  Google Scholar 

  26. Zhang Y, Rempel C (2012) Retrogradation and antiplasticization of thermoplastic starch. Thermoplast Elastomers. https://doi.org/10.5772/35848

    Google Scholar 

  27. Wang SS, Chiang WC, Zhao B, Zheng XG, Kim IH (1991) Experimental analysis and computer simulation of starch-water interactions during phase transition. J Food Sci 56:121–124. https://doi.org/10.1111/j.1365-2621.1991.tb07990.x

    Article  CAS  Google Scholar 

  28. Hari PK, Garg S, Garg SK (1989) Gelatinization of starch and modified starch. Starch-Stärke 41:88–91. https://doi.org/10.1002/star.19890410304

    Article  CAS  Google Scholar 

  29. Kislenko V, Oliynyk L, Golachowski A (2006) The model of the rheological behavior of gelatinized starch at low concentrations. J Colloid Interface Sci 294:79–86

    Article  CAS  Google Scholar 

  30. Di Gioia L, Guilbert S (1999) Corn protein-based thermoplastic resins: effect of some polar and amphiphilic plasticizers. J Agric Food Chem 47:1254–1261. https://doi.org/10.1021/jf980976j

    Article  Google Scholar 

  31. Godbillot L, Dole P, Joly C, Rogé B, Mathlouthi M (2006) Analysis of water binding in starch plasticized films. Food Chem 96:380–386. https://doi.org/10.1016/j.foodchem.2005.02.054

    Article  CAS  Google Scholar 

  32. Da Róz AL, Carvalho AJF, Gandini A, Curvelo AAS (2006) The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63:417–424

    Article  Google Scholar 

  33. Kampeerapappun P, Aht-ong D, Pentrakoon D, Srikulkit K (2007) Preparation of cassava starch/montmorillonite composite film. Carbohydr Polym 67:155–163. https://doi.org/10.1016/j.carbpol.2006.05.012

    Article  CAS  Google Scholar 

  34. Schlemmer D, De Oliveira ER, Sales MJA (2007) Polystyrene/thermoplastic starch blends with different plasticizers preparation and thermal characterization. J Therm Anal Calorim 87:635–638

    Article  CAS  Google Scholar 

  35. Brabender (2016) Brabender® measuring mixers for material research and quality control. Brabender® GmbH & Co. KG, Duisburg

    Google Scholar 

  36. Sakai T (2013) Screw extrusion technology – past, present and future. Polimery/polymers 58:847–857. https://doi.org/10.14314/polimery.2013.847

    Article  Google Scholar 

  37. van Soest JJG, Benes K, de Wit D, Vliegenthart JFG (1996) The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer (Guildf) 37:3543–3552

    Article  Google Scholar 

  38. Tzoganakis C (1989) Reactive extrusion of polymers: a review. Adv Polym Technol 9:312–330

    Article  Google Scholar 

  39. Stepto RFT (2006) Understanding the processing of thermoplastic starch. Macromol Symp 245–246:571–577. https://doi.org/10.1002/masy.200651382

    Article  CAS  Google Scholar 

  40. Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348–1368. https://doi.org/10.1016/j.progpolymsci.2009.07.001

    Article  CAS  Google Scholar 

  41. García MA, Martino MN, Zaritzky NE (2000) Microstructural characterization of plasticized starch-based films. Starch-Starke 52:118–124. https://doi.org/10.1002/1521-379X(200006)52:4<118::AID-STAR118>3.0.CO;2-0

    Article  Google Scholar 

  42. Esmaeili M, Pircheraghi G, Bagheri R (2017) Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. Polym Int 66:809–819. https://doi.org/10.1002/pi.5319

    Article  CAS  Google Scholar 

  43. Thiewes HJ, Steeneken PAM (1997) The glass transition and the sub-Tg endotherm of amorphous and native potato starch at low moisture content. Carbohydr Polym 32:123–130. https://doi.org/10.1016/S0144-8617(96)00133-6

    Article  CAS  Google Scholar 

  44. Pushpadass HA, Hanna MA (2009) Age-induced changes in the microstructure and selected properties of extruded starch films plasticized with glycerol and stearic acid. Ind Eng Chem Res 48:8457–8463. https://doi.org/10.1021/ie801922z

    Article  CAS  Google Scholar 

  45. Shi R, Liu Q, Ding T, Han Y, Zhang L, Chen D, Tian W (2007) Ageing of soft thermoplastic starch with high glycerol content. J Appl Polym Sci 103:574–586

    Article  CAS  Google Scholar 

  46. Zhang Y, Han JH (2010) Crystallization of high-amylose starch by the addition of plasticizers at low and intermediate concentrations. J Food Sci 75. https://doi.org/10.1111/j.1750-3841.2009.01404.x

    Article  CAS  Google Scholar 

  47. Yang J h, Yu J g, Ma X f (2006) Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS). Carbohydr Polym 66:110–116. https://doi.org/10.1016/j.carbpol.2006.02.029

    Article  CAS  Google Scholar 

  48. Development D (1986) (1986) The injection – moulde: d Capsui-Ei 1. 2:2113–2126

    Google Scholar 

  49. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Proc 2:296–303. https://doi.org/10.1016/j.aaspro.2014.11.042

    Article  Google Scholar 

  50. Ribba L, Garcia NL, D’Accorso N, Goyanes S (2018) Chapter 3 – Disadvantages of starch-based materials, feasible alternatives in order to overcome these limitations. In: Starch-Based Materials in Food Packaging Processing, Characterization and Applications. Elsevier, USA. pp 37–76

    Chapter  Google Scholar 

  51. Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2013) Water sorption and physicomechanical properties of corn starch-based films. J Appl Polym Sci 128:530–536. https://doi.org/10.1002/app.38213

    Article  CAS  Google Scholar 

  52. Guarás MP, Alvarez VA, Ludueña LN (2015) Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications. J Polym Res 22:165. https://doi.org/10.1007/s10965-015-0817-0

    Article  CAS  Google Scholar 

  53. Mali S, Grossmann MVE, García MA, Martino MN, Zaritzky NE (2006) Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J Food Eng 75:453–460. https://doi.org/10.1016/j.jfoodeng.2005.04.031

    Article  CAS  Google Scholar 

  54. Sahu J, Rahman M (2014) Innovation in food packaging. Introd Adv Food Process Eng 293–314. https://doi.org/10.1201/b16696-12

    Chapter  Google Scholar 

  55. Mali S, Grossmann MVE, García MA, Martino MN, Zaritzky NE (2008) Antiplasticizing effect of glycerol and sorbitol on the properties of cassava starch films Efeito antiplastificante de glicerol e sorbitol nas propriedades de filmes de amido de mandioca. Braz J Food Technol 11:194–200

    Google Scholar 

  56. Gaudin S, Lourdin D, Forssell PM, Colonna P (2000) AntiPlasticization and oxygen permeability of starch-sorbitol films. Carbohydr Polym 43:33–37. https://doi.org/10.1016/S0144-8617(99)00206-4

    Article  CAS  Google Scholar 

  57. Chang YP, Cheah PB, Seow CC (2000) Plasticizing – Antiplasticizing effects of water on physical properties of tapioca. J Food Sci 65:445

    Article  CAS  Google Scholar 

  58. Li M, Xie F, Hasjim J, Witt T, Halley PJ, Gilbert RG (2015) Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline. Carbohydr Polym 117:262–270. https://doi.org/10.1016/j.carbpol.2014.09.036

    Article  CAS  Google Scholar 

  59. Cano A, Fortunati E, Cháfer M, Kenny JM, Chiralt A, González-Martínez C (2015) Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocoll 48:84–93. https://doi.org/10.1016/j.foodhyd.2015.01.008

    Article  CAS  Google Scholar 

  60. Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5:2058–2076. https://doi.org/10.1007/s11947-012-0835-4

    Article  CAS  Google Scholar 

  61. Monteiro MKS, de Oliveira VRL, dos Santos FKG, de Leite RHL, Aroucha EMM, da Silva RR, de Silva KNO (2017) Analysis of water barrier, mechanical and thermal properties of nanocoposites based on cassava starch and natural clay or modified by anionic exchange. Mater Res 20:69–76

    Article  Google Scholar 

  62. Zhang G, Wu T, Lin W, Tan Y, Chen R, Huang Z, Yin X, Qu J (2017) Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Compos Sci Technol 145. https://doi.org/10.1016/j.compscitech.2017.04.005

    Article  CAS  Google Scholar 

  63. Zare Y, Rhee KY (2017) Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Compos Part A Appl Sci Manuf 102. https://doi.org/10.1016/j.compositesa.2017.08.004

    Article  CAS  Google Scholar 

  64. Wu T, Yuan D, Qu J-P (2017) Preparation of poly(L-lactide)/poly(ethylene glycol)/organo-modified montmorillonite nanocomposites via melt intercalation under continuous elongation flow. J Polym Eng 38. https://doi.org/10.1515/polyeng-2017-0229

    Article  CAS  Google Scholar 

  65. Mould S, Barbas J, Machado A, Nobrega JM, Covas J (2014) Preparation of polymer-clay nanocomposites by melt mixing in a twin screw extruder: using on-line SAOS rheometry to assess the level of dispersion. Int Polym Process 29:63–70. https://doi.org/10.3139/217.2803

    Article  CAS  Google Scholar 

  66. Gürses A (2016) Chapter 4.4 – Characterization of Polymer-Clay Nanocomposites. In: Introduction to polymer–clay nanocomposites. CRC Press, Taylor & Francis Group, New York, USA. pp 256–273

    Google Scholar 

  67. Ludueña LN, Kenny JM, Vázquez A, Alvarez VA (2011) Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Mater Sci Eng A 529:215–223. https://doi.org/10.1016/j.msea.2011.09.020

    Article  CAS  Google Scholar 

  68. Ollier RP, Lanfranconi MR, Alvarez VA, Ludueña LN (2018) Polycaprolactone/organoclay biodegradable nanocomposites: dissimilar tendencies of different clay modifiers. Adv Mater Lett 9:796–804. https://doi.org/10.5185/amlett.2018.1828

    Article  CAS  Google Scholar 

  69. Feng Y (2017) Research progress of organic modified montmorillonite. Adv Mater 6:20. https://doi.org/10.11648/j.am.20170603.11

    Article  CAS  Google Scholar 

  70. Luduena L, Bálzamo V, Vazquez A, Alvarez VA (2009) Evaluation of methods for stiffness predictions of polymer based nanocomposites: theoretical background and examples of applications (PCL-clay nanocomposites). In: Cabral V, Silva R (eds) Nanomaterials: properties, preparation and processes. Nova Publishers, New York

    Google Scholar 

  71. Merino D, Ludueña LN, Alvarez VA (2018) Dissimilar tendencies of innovative green clay organo-modifier on the final properties of poly(ε-caprolactone) based nanocomposites. J Polym Environ 26:716–727. https://doi.org/10.1007/s10924-017-0994-5

    Article  CAS  Google Scholar 

  72. Ludueña LN, Vázquez A, Alvarez VA (2013) Effect of the type of clay organo-modifier on the morphology, thermal/mechanical/impact/barrier properties and biodegradation in soil of polycaprolactone/clay nanocomposites. J Appl Polym Sci 128:2648–2657. https://doi.org/10.1002/app.38425

    Article  CAS  Google Scholar 

  73. Ludueña LN, Kenny JM, Vázquez A, Alvarez VA (2013) Effect of extrusion conditions and post-extrusion techniques on the morphology and thermal/mechanical properties of polycaprolactone/clay nanocomposites. J Compos Mater 48:2059

    Article  Google Scholar 

  74. Duan Q, Jiang T, Xue C, Liu H, Liu F, Alee M, Ali A, Chen L, Yu L (2020) Preparation and characterization of starch/enteromorpha/nano-clay hybrid composites. Int J Biol Macromol 150. https://doi.org/10.1016/j.ijbiomac.2020.01.283

    Article  CAS  Google Scholar 

  75. Wang W, Zhang H, Jia R, Dai Y, Dong H, Hou H, Guo Q (2017) High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocoll 79. https://doi.org/10.1016/j.foodhyd.2017.12.013

    Article  CAS  Google Scholar 

  76. Zhou M, Gao M, Kong Q, Zhu P (2018) High-performance starch/clay bionanocomposite for textile warp sizing. Polym Compos 39:E441–E447. https://doi.org/10.1002/pc.24506

    Article  CAS  Google Scholar 

  77. Perotti GF, Kijchavengkul T, Auras RA, Constantino VRL (2017) Nanocomposites based on cassava starch and chitosan-modified clay: physico-mechanical properties and biodegradability in simulated compost soil. J Braz Chem Soc 28:649–658

    CAS  Google Scholar 

  78. Gutiérrez TJ, Alvarez VA (2018) Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocoll 77:407–420. https://doi.org/10.1016/J.FOODHYD.2017.10.017

    Article  Google Scholar 

  79. Monteiro MKS, Oliveira V, Santos FK, Barros Neto E, Leite RHL, Aroucha E, Silva RR, Silva K (2017) Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability. Food Res Int 105. https://doi.org/10.1016/j.foodres.2017.11.030

    Article  CAS  Google Scholar 

  80. Campos-Requena VH, Rivas BL, Pérez MA, Garrido-Miranda KA, Pereira ED (2018) Release of essential oil constituent from thermoplastic starch/layered silicate bionanocomposite film as a potential active packaging material. Eur Polym J 109:64–71. https://doi.org/10.1016/j.eurpolymj.2018.08.055

    Article  CAS  Google Scholar 

  81. Lara SC, Salcedo F (2016) Gelatinization and retrogradation phenomena in starch/montmorillonite nanocomposites plasticized with different glycerol/water ratios. Carbohydr Polym 151:206–212. https://doi.org/10.1016/j.carbpol.2016.05.065

    Article  CAS  Google Scholar 

  82. Campos-Requena VH, Rivas BL, Pérez MA, Figueroa CR, Figueroa NE, Sanfuentes EA (2017) Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries − in vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol Technol 129:29–36. https://doi.org/10.1016/j.postharvbio.2017.03.005

    Article  CAS  Google Scholar 

  83. Adamus J, Spychaj T, Zdanowicz M, Jędrzejewski R (2018) Thermoplastic starch with deep eutectic solvents and montmorillonite as a base for composite materials. Ind Crop Prod 123:278–284. https://doi.org/10.1016/j.indcrop.2018.06.069

    Article  CAS  Google Scholar 

  84. Merino D, Gutiérrez TJ, Alvarez VA (2019) Structural and thermal properties of agricultural mulch films based on native and oxidized corn starch nanocomposites. Starch-Stärke 71:1800341. https://doi.org/10.1002/star.201800341

    Article  CAS  Google Scholar 

  85. Merino D, Gutiérrez TJ, Mansilla AY, Casalongué CA, Alvarez VA (2018) Critical evaluation of starch-based antibacterial nanocomposites as agricultural mulch films: study on their interactions with water and light. ACS Sustain Chem Eng 6:15662–15672. https://doi.org/10.1021/acssuschemeng.8b04162

    Article  CAS  Google Scholar 

  86. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529. https://doi.org/10.1007/s13593-011-0068-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Alejandra Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guarás, M.P., Ludueña, L.N., Alvarez, V.A. (2020). Recent Advances in Thermoplastic Starch Biodegradable Nanocomposites. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics