Skip to main content

Abstract

Composites are a group of materials that mainly constitutes metals, ceramics, and/or polymers in order to improve the composite properties. Usually, some stiffer, stronger materials are used as reinforcing agents in the composite matrix to enhance the mechanical and thermal behavior of the composite materials. Carbon fibers are the major load-bearing components in most of the composites.

Carbon fiber composites have always been regarded as the materials that can challenge steel in high structural applications. Polymers reinforced with carbon fiber are advanced composite materials, and they are utilized in a broad range of applications, such as aerospace and automotive industries and in sports equipment. Epoxy is the most commonly used polymer matrix with carbon fibers. In addition, polyester, polysulfone, polyimide, and thermoplastic resins are also used. When the carbon fibers are bound with a plastic polymer resin, it creates a composite material that is extremely strong, with high modulus, durable, low cost, and lightweight, and can be found in many forms, including fabrics, tubes, and tows. Due to the superior nature of carbon fibers, their applications have been expanded to the construction industry, which uses carbon fibers to reinforce concrete.

Carbon fiber composites can have very great thermal conductivities, due to the incorporation of highly graphitic fibers. Therefore, composites reinforced with carbon fiber are also preferred in electronic systems, as a way of enhancing the removal of unwanted heat away from the electronic machines. This chapter focuses on carbon fiber reinforced composites and its various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kostagiannakopoulou C, Loutas TH, Sotiriadis G, Markou A, Kostopoulos V (2015) On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species. Compos Sci Technol 118:217–225

    Article  CAS  Google Scholar 

  2. Bhardwaj P, Grace AN (2020) Antistatic and microwave shielding performance of polythiophene-graphene grafted 3-dimensional carbon fibre composite. Diam Relat Mater 106:107871

    Article  CAS  Google Scholar 

  3. Mishnaevsky L, Branner K, Petersen HN, Beauson J, McGugan M, Sørensen BF (2017) Materials for wind turbine blades: an overview. Materials 10:1285

    Article  CAS  Google Scholar 

  4. Salam MBA, Hosur MV, Zainuddin S, Jeelani S (2013) Improvement in mechanical and thermo-mechanical properties of epoxy composite using two different functionalized multi-walled carbon nanotubes. Open J Compos Mater 3(2):1–9

    Article  CAS  Google Scholar 

  5. Alessi S, Pitarresi G, Spadaro G (2014) Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites. Compos Part B Eng 67:145–153

    Article  CAS  Google Scholar 

  6. Ma Y, Yang Y, Sugahara T, Hamada H (2016) A study on the failure behavior and mechanical properties of unidirectional fiber reinforced thermosetting and thermoplastic composites. Comp Part B Eng 99:162–172

    Article  CAS  Google Scholar 

  7. Park JK, Lee JY, Drzal LT, Cho D (2016) Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers. Carbon Lett 17(1):33–38

    Article  Google Scholar 

  8. Hwang D, Cho D (2019) Fiber aspect ratio effect on mechanical and thermal properties of carbon fiber/ABS composites via extrusion and long fiber thermoplastic processes. J Ind Eng Chem 80:335–344

    Article  CAS  Google Scholar 

  9. Brocks T, Cioffi MOH, Voorwald HJC (2013) Effect of fiber surface on flexural strength in carbon fabric reinforced epoxy composites. Appl Surf Sci 274:210–216

    Article  CAS  Google Scholar 

  10. Oliveux G, Dandy LO, Leeke GA (2015) Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties. Prog Mater Sci 72:61–99

    Article  CAS  Google Scholar 

  11. Thakur VK (2014) Nanocellulose polymer nanocomposites: fundamentals and applications, vol 9781118871. Wiley, Hoboken. 1–513p

    Book  Google Scholar 

  12. Che D, Saxena I, Han P, Guo P, Ehmann KF (2014) Machining of carbon fiber reinforced plastics/polymers: a literature review. J Manuf Sci E T ASME 136(3):1–22. https://doi.org/10.1115/1.4026526

  13. Fan S, Zhang L, Cheng L, Tian G, Yang S (2010) Effect of braking pressure and braking speed on the tribological properties of C/SiC aircraft brake materials. Compos Sci Technol 70(6):959–965

    Article  CAS  Google Scholar 

  14. Du J, Zhang H, Geng Y, Ming W, He W, Ma J et al (2019) A review on machining of carbon fiber reinforced ceramic matrix composites. Ceram Int 45:18155–18166

    Article  CAS  Google Scholar 

  15. Chung DDL (2003) Science of composite materials. In: Composite Materials. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-3732-0_2

  16. Cococcetta NM, Pearl D, Jahan MP, Ma J (2020) Investigating surface finish, burr formation, and tool wear during machining of 3D printed carbon fiber reinforced polymer composite. J Manuf Process 56:1304

    Article  Google Scholar 

  17. Daniyan IA, Mpofu K, Adeodu AO, Adesina O (2020) Development of carbon fibre reinforced polymer matrix composites and optimization of the process parameters for railcar applications. Mater Today Proc 1–7. https://doi.org/10.1016/j.matpr.2020.03.480

  18. Ajay Kumar M, Khan MS, Mishra SB (2020) Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics. Mater Today Proc 27(2):975–983

    Google Scholar 

  19. Luklinska ZB, Bonfield W (1997) Morphology and ultrastructure of the interface between hydroxyapatite-polyhydroxybutyrate composite implant and bone. J Mater Sci Mater Med 8(6):379–383

    Article  CAS  Google Scholar 

  20. Vainionpää S, Rokkanen P, Törmälä P (1989) Surgical applications of biodegradable polymers in human tissues. Prog Polym Sci 14:679–716

    Article  Google Scholar 

  21. Shen L, Yang H, Ying J, Qiao F, Peng M (2009) Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites. J Mater Sci Mater Med 20(11):2259–2265

    Article  CAS  Google Scholar 

  22. Liu Z, Lei Q, Xing S (2019) Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. J Mater Res Technol 8(5):3743–3753

    Google Scholar 

  23. Miyazaki T, Matsunami C, Shirosaki Y (2017) Bioactive carbon–PEEK composites prepared by chemical surface treatment. Mater Sci Eng C 70:71–75

    Article  CAS  Google Scholar 

  24. Duan L, Zhao X, Wang Y (2020) Oxidation and ablation behaviors of carbon fiber/phenolic resin composites modified with borosilicate glass and polycarbosilane interface. J Alloys Compd 827:154277

    Article  CAS  Google Scholar 

  25. Salifu S, Desai D, Ogunbiyi O, Sadiku R, Adesina O, Adesina O (In Press) Comparative study of high velocity impact response of aluminium 3105-H18 and carbon fibre-epoxy composite double hat bumper beams. Mater Today Proc 1–5. https://doi.org/10.1016/j.matpr.2020.03.828

  26. Mortensen A, Cornie JA, Flemings MC (1988) Solidification processing of metal-matrix composites. JOM 40(2):12–19

    Article  CAS  Google Scholar 

  27. Chou TW, Kelly A, Okura A (1985) Fibre-reinforced metal-matrix composites. Composites 16(3):187–206

    Article  CAS  Google Scholar 

  28. Dehghani A, Aslani F (2020) The synergistic effects of shape memory alloy, steel, and carbon fibres with polyvinyl alcohol fibres in hybrid strain-hardening cementitious composites. Constr Build Mater 252:119061

    Article  CAS  Google Scholar 

  29. Wang XX, Ma T, Shu JC, Cao MS (2018) Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem Eng J 332:321–330

    Article  CAS  Google Scholar 

  30. Peng S, Wang S, Hao G, Zhu C, Zhang Y, Lv X et al (2019) Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). J Magn Magn Mater 487:165306

    Article  CAS  Google Scholar 

  31. Zhao Z, Li K, Li W, Liu Q, Kou G, Zhang Y (2018) Preparation, ablation behavior and mechanism of C/C-ZrC-SiC and C/C-SiC composites. Ceram Int 44(7):7481–7490

    Article  CAS  Google Scholar 

  32. Saha A, Raj R (2007) Crystallization maps for SiCO amorphous ceramics. J Am Ceram Soc 90(2):578–583

    Article  CAS  Google Scholar 

  33. Suttor D, Erny T, Greil P, Goedecke H, Haug T (1997) Fiber-reinforced ceramic-matrix composites with a polysiloxane/boron-derived matrix. J Am Ceram Soc 80(7):1831–1840

    Article  CAS  Google Scholar 

  34. Vijay V, Siva S, Sreejith KJ, Prabhakaran PV, Devasia R (2018) Effect of boron inclusion in SiOC polymer derived matrix on the mechanical and oxidation resistance properties of fiber reinforced composites. Mater Chem Phys 205:269–277

    Article  CAS  Google Scholar 

  35. Vijay VV, Shyin PP, Biju VM, Devasia R (2020) Fabrication and property evaluation of titanium silicide active filler incorporated ceramic matrix composite. Ceram Int 46(13):21489–21495

    Google Scholar 

  36. Chawla KK (2003) Ceramic matrix materials. In: Ceramic Matrix Composites. Springer, US. https://doi.org/10.1007/978-1-4615-1029-1

  37. Jia D, Liang B, Yang Z, Zhou Y (2018) Metastable Si-B-C-N ceramics and their matrix composites developed by inorganic route based on mechanical alloying: fabrication, microstructures, properties and their relevant basic scientific issues. Prog Mater Sci 98:1–67

    Article  CAS  Google Scholar 

  38. Miao Y, Zhang F, Yang Z, Jia D, Zhou Y (2020) Incorporation of BN-coated carbon fibers into ZrB2/SiBCN ceramic composites and their ablation behavior. J Eur Ceram Soc 40(4):1078–1085

    Article  CAS  Google Scholar 

  39. Xiong Y, Hu J, Nie X, Wei D, Zhang N, Peng S et al (2020) One-step firing of carbon fiber and ceramic precursors for high performance electro-thermal composite: influence of graphene coating. Mater Des 191:108633

    Article  CAS  Google Scholar 

  40. Ridzuan MJM, Abdul Majid MS, Khasri A, Basaruddin KS, Gibson AG (2019) Effect of moisture exposure and elevated temperatures on impact response of Pennisetum purpureum/glass-reinforced epoxy (PGRE) hybrid composites. Compos Part B Eng 160:84–93

    Article  CAS  Google Scholar 

  41. Ahmed SFU, Maalej M (2009) Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites. Constr Build Mater 23(1):96–106

    Article  Google Scholar 

  42. Ahmed S, Maalej M, Paramasivam P (2003) Strain-hardening behaviour of hybrid fibre reinforced cement composites. J Ferrocem 33(3):172–182

    Google Scholar 

  43. Al-Gemeel AN, Zhuge Y, Youssf O (2018) Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite. Constr Build Mater 171:858–870

    Article  CAS  Google Scholar 

  44. Zhang J, Wang Z, Wang Q, Gao Y (2016) Simulation and test of flexural performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite. J Compos Mater 50(30):4291–4305

    Article  CAS  Google Scholar 

  45. Zhenbo W, Jun Z, Jiahe W, Zhengjie S (2015) Tensile performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite with impact of water to binder ratio. J Compos Mater 49(18):2169–2186

    Article  CAS  Google Scholar 

  46. Li Q, Gao X, Xu S (2016) Multiple effects of nano-SiO2 and hybrid fibers on properties of high toughness fiber reinforced cementitious composites with high-volume fly ash. Cem Concr Compos 72:201–212

    Article  CAS  Google Scholar 

  47. Chiang CL, Chou HY, Shen MY (2020) Effect of environmental aging on mechanical properties of graphene nanoplatelet/nanocarbon aerogel hybrid-reinforced epoxy/carbon fiber composite laminates. Compos Part A Appl Sci Manuf 130:105718

    Article  CAS  Google Scholar 

  48. Cheng M, Zhong Y, Kureemun U, Cao D, Hu H, Lee HP et al (2020) Environmental durability of carbon/flax fiber hybrid composites. Compos Struct 234:111719

    Article  Google Scholar 

  49. Cheng F, Hu Y, Yuan B, Hu X, Huang Z (2020) Transverse and longitudinal flexural properties of unidirectional carbon fiber composites interleaved with hierarchical aramid pulp micro/nano-fibers. Compos Part B Eng 188:107897

    Article  CAS  Google Scholar 

  50. Hak DJ, Mauffrey C, Seligson D, Lindeque B (2014) Use of carbon-fiber-reinforced composite implants in orthopedic surgery. Orthopedics 37:825–830

    Article  Google Scholar 

  51. Fouad H, Mourad AHI, ALshammari BA, Hassan MK, Abdallah MY, Hashem M (2020) Fracture toughness, vibration modal analysis and viscoelastic behavior of Kevlar, glass, and carbon fiber/epoxy composites for dental-post applications. J Mech Behav Biomed Mater 101:103456

    Article  CAS  Google Scholar 

  52. Deng Y, Zhou P, Liu X, Wang L, Xiong X, Tang Z et al (2015) Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf B Biointerfaces 136:64–73

    Article  CAS  Google Scholar 

  53. Sarkar C, Sahu SK, Sinha A, Chakraborty J, Garai S (2019) Facile synthesis of carbon fiber reinforced polymer-hydroxyapatite ternary composite: a mechanically strong bioactive bone graft. Mater Sci Eng C 97:388–396

    Article  CAS  Google Scholar 

  54. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M (2013) Carbon fiber reinforced PEEK Optima – a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 17:221–228

    Article  CAS  Google Scholar 

  55. Zhang X, Zhang Y, Zhang X, Wang Y, Wang J, Lu M et al (2015) Mechanical properties and cytocompatibility of carbon fibre reinforced nano-hydroxyapatite/polyamide66 ternary biocomposite. J Mech Behav Biomed Mater 42:267–273

    Article  CAS  Google Scholar 

  56. Hasanzadeh M, Ansari R, Hassanzadeh-Aghdam MK (2019) Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mech Mater 129:63–79

    Article  Google Scholar 

  57. Kim S, Lee J, Roh C, Eun J, Kang C (2019) Evaluation of carbon fiber and p-aramid composite for industrial helmet using simple cross-ply for protecting human heads. Mech Mater 139:103203

    Article  Google Scholar 

  58. Hine PJ, Gusev AA (2019) Validating a micromechanical modelling scheme for predicting the five independent viscoelastic constants of unidirectional carbon fibre composites. Int J Eng Sci 144:103133

    Article  CAS  Google Scholar 

  59. Altin Karataş M, Gökkaya H (2018) A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technol 14:318–326

    Article  Google Scholar 

  60. Qiu J, Idris MK, Grau G, Melenka GW (2020) Fabrication of electroluminescent carbon fiber composite for damage visualization. Manuf Lett 24:56–60

    Article  Google Scholar 

  61. Xia Q, Mei H, Zhang Z, Liu Y, Liu Y, Leng J (2020) Fabrication of the silver modified carbon nanotube film/carbon fiber reinforced polymer composite for the lightning strike protection application. Compos Part B Eng 180:107563

    Article  CAS  Google Scholar 

  62. Guo Y, Xu Y, Wang Q, Dong Q, Yi X, Jia Y (2019) Eliminating lightning strike damage to carbon fiber composite structures in Zone 2 of aircraft by Ni-coated carbon fiber nonwoven veils. Compos Sci Technol 169:95–102

    Article  CAS  Google Scholar 

  63. Zhao Z, Kou K, Wu H (2020) 2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber. J Colloid Interface Sci 574:1–10

    Article  CAS  Google Scholar 

  64. Wang Q, Zhou H, Liu M, Li X, Hu Q (2019) Study of the skin depth and defect detection in carbon fiber composites with Terahertz waves. Optik (Stuttg) 178:1035–1044

    Article  CAS  Google Scholar 

  65. Nuhiji B, Bower MP, Swait T, Phadnis V, Day RJ, Scaife RJ (In Press) Simulation of carbon fibre composites in an industrial microwave. Mater Today Proc 1–11. https://doi.org/10.1016/j.matpr.2020.01.284

  66. Verma N, Kumar R, Zafar S, Pathak H (2020) Vacuum-assisted microwave curing of epoxy/carbon fiber composite: an attempt for defect reduction in processing. Manuf Lett 24:127–131

    Article  Google Scholar 

  67. Ma XT, Wang FS, Wei Z, Wang DH, Xu B (2019) Transient response predication of nickel coated carbon fiber composite subjected to high altitude electromagnetic pulse. Compos Struct 226:111307

    Article  Google Scholar 

  68. Thakur A, Dong X (2020) Printing with 3D continuous carbon fiber multifunctional composites via UV-assisted coextrusion deposition. Manuf Lett 24:1–5

    Article  Google Scholar 

  69. Mechtcherine V, Michel A, Liebscher M, Schneider K, Großmann C (2020) Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: material and automation perspectives. Autom Constr 110:103002

    Article  Google Scholar 

  70. Pei S, Wang K, Li J, Li Y, Zeng D, Su X et al (2020) Mechanical properties prediction of injection molded short/long carbon fiber reinforced polymer composites using micro X-ray computed tomography. Compos Part A Appl Sci Manuf 130:105732

    Article  CAS  Google Scholar 

  71. Asif S, Chansoria P, Shirwaiker R (2020) Ultrasound-assisted vat photopolymerization 3D printing of preferentially organized carbon fiber reinforced polymer composites. J Manuf Process 56:1340

    Article  Google Scholar 

  72. Wu Y, Dhamodharan D, Wang Z, Wang R, Wu L (2020) Effect of electrophoretic deposition followed by solution pre-impregnated surface modified carbon fiber-carbon nanotubes on the mechanical properties of carbon fiber reinforced polycarbonate composites. Compos Part B Eng 195:108093

    Article  CAS  Google Scholar 

  73. Han K-n, Zhou W, Qin R, Wang G-f, Ma L-H (2020) Effects of carbon nanotubes on open-hole carbon fiber reinforced polymer composites. Mater Today Commun 24:1–11. https://doi.org/10.1016/j.mtcomm.2020.101106

  74. Khan ZI, Arsad A, Mohamad Z, Habib U, MAA Z (In Press) Comparative study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced epoxy composites. Mater Today Proc 1–3. https://doi.org/10.1016/j.matpr.2020.04.223

  75. Krishna Kumar K, Hutchinson AR, Broughton JG (2020) Static shear response of recycled carbon fibre composites for structural applications. Compos Struct 246:112358

    Article  Google Scholar 

  76. De S, Fulmali AO, Shivangi PN, Choudhury S, Prusty RK, Ray BC (2020) Interface modification of carbon fiber reinforced epoxy composite by hydroxyl/carboxyl functionalized carbon nanotube. Mater Today Proc 27(2):1473–1478. https://doi.org/10.1016/j.matpr.2020.02.970

  77. Umanath K, Prabhu MK, Yuvaraj A, Devika D (In Press) Fabrication and analysis of Master leaf spring plate using carbon fibre and pineapple leaf fibre as natural composite materials. Mater Today Proc 1–6. https://doi.org/10.1016/j.matpr.2020.03.790

  78. Xu L, Wang Y, Wu X, Ding J, Ma Z, Shen L (2020) Development of an ultra-thin active mirror based on carbon fiber composite. Optik (Stuttg) 207:1–9. https://doi.org/10.1016/j.ijleo.2020.164463

  79. Yu Y, Jin G, Fang Y, Xu Z, Lü X, Chen C (2020) Potential-aided recovery of iodide using 2-D nanosheet CuxO coating polymer/graphene/carbon fibers composite. Chin J Chem Eng 28:1046

    Article  Google Scholar 

  80. Zabihi O, Ahmadi M, Liu C, Mahmoodi R, Li Q, Naebe M (2020) Development of a low cost and green microwave assisted approach towards the circular carbon fibre composites. Compos Part B Eng 184:107750

    Article  CAS  Google Scholar 

  81. Dong Y, Yu T, Wang X-j, Zhang G, Lu J-h, Zhang M-l et al (2020) Improved interfacial shear strength in polyphenylene sulfide/carbon fiber composites via the carboxylic polyphenylene sulfide sizing agent. Compos Sci Technol 190:1–9. https://doi.org/10.1016/j.compscitech.2020.108056

  82. Goli E, Parikh NA, Yourdkhani M, Hibbard NG, Moore JS, Sottos NR et al (2020) Frontal polymerization of unidirectional carbon-fiber-reinforced composites. Compos Part A Appl Sci Manuf 130:105689

    Article  CAS  Google Scholar 

  83. Mamalis D, Murray JJ, McClements J, Tsikritsis D, Koutsos V, McCarthy ED et al (2019) Novel carbon-fibre powder-epoxy composites: Interface phenomena and interlaminar fracture behaviour. Compos Part B Eng 174:107012

    Article  CAS  Google Scholar 

  84. Yao Z, Wang C, Qin J, Su S, Wang Y, Wang Q et al (2020) Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures. Carbon N Y 164:133–142

    Article  CAS  Google Scholar 

  85. Shin YC, Lee W, Kim HS (2020) Mode II interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites. Compos Struct 236:1–9. https://doi.org/10.1016/j.compstruct.2019.111808

  86. Sun T, Li M, Zhou S, Liang M, Chen Y, Zou H (2020) Multi-scale structure construction of carbon fiber surface by electrophoretic deposition and electropolymerization to enhance the interfacial strength of epoxy resin composites. Appl Surf Sci 499:143929

    Article  CAS  Google Scholar 

  87. Ahmadijokani F, Shojaei A, Dordanihaghighi S, Jafarpour E, Mohammadi S, Arjmand M (2020) Effects of hybrid carbon-aramid fiber on performance of non-asbestos organic brake friction composites. Wear 452–453:203280

    Article  CAS  Google Scholar 

  88. Liu H, Wang H, Lyu Y, He C, Liu Z (2020) A novel triboelectric nanogenerator based on carbon fiber reinforced composite lamina and as a self-powered displacement sensor. Microelectron Eng 224:111231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Perumal, A.B., Nambiar, R.B., Sellamuthu, P.S., Sadiku, E.R. (2020). Carbon Fiber Composites. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_174-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_174-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics