Life Cycle of Polymer Nanocomposites Matrices in Hazardous Waste Treatment

  • R. O. Abdel RahmanEmail author
  • O. A. Abdel Moamen
  • E. H. El-Masry
Living reference work entry


The strengthened international and national regulatory requirements on hazardous contaminants discharge drives the research and development efforts to find and optimize novel materials that could be used effectively in removing these contaminants from different waste streams and isolating them from the accessible environment. The evolution of nanosciences and nanotechnologies led to considerable improvement in hazardous contaminants separation and degradation technologies, where nano-materials (NM) and nanocomposites were proposed for sorptive removal, catalytic degradation, and disinfections. On the other side, polymers and polymer composites have been extensively applied in the management of hazardous wastes in membrane separation, sorption, and immobilization of radioactive wastes. To improve the performance and stability of these materials, hybrid polymer nanocomposites (PNC) were evaluated. In this chapter, the life cycle of PNC applied in the management of hazardous wastes will be traced. The considered life cycle stages are design and preparation, applications, and management of contaminated PNC (end of life cycle). The main aim of this work is to summarize the current knowledge in the field by presenting PNC application in membrane separation, photocatalytic degradation, and sorptive removal of hazardous contaminants. The gaps in the application of these materials in radioactive waste immobilization will be highlighted. Finally the end of life cycle will be addressed by presenting thermal degradation and immobilization of PNC and identifying the challenges that associate them.


Hazardous waste Radioactive waste Polymer nano-composite Sorption Membrane Photo-catalytic degradation End of life cycle manamgnet Thermal degradation Radioactive waste immobilization Disposal 


  1. Abdel Rahman RO (2010) Preliminary assessment of continuous atmospheric discharge from the low active waste incinerator. Int J Environ Sci 1(2):111–122Google Scholar
  2. Abdel Rahman RO (2012) Planning and implementation of radioactive waste management system. In: Abdel Rahman RO (ed) Radioactive waste. InTechOpen. ISBN: 978-953-51-0551-0CrossRefGoogle Scholar
  3. Abdel Rahman RO (2016) Introduction to current trends in nuclear material research and technology. In: Abdel Rahman RO, Saleh HEM (eds) Nuclear material performance. Intech, pp 3–14. Scholar
  4. Abdel Rahman RO (2019) Introductory chapter: development of assessment models to support pollution preventive and control decisions. In: Abdel Rahman RO (ed) Kinetic modeling for environmental systems. IntechOpen.
  5. Abdel Rahman RO, Michael IO (2017) Application of nano-materials in radioactive waste management. In: Tian CZ, Bhola RG, Govil JN (eds) Environmental science and engineering. Industrial processes & nanotechnology, vol 10. Studium Press, LLC, USA, Berlin, pp 361–378Google Scholar
  6. Abdel Rahman RO, Ojovan MI (2016) Recent trends in the evaluation of cementitious material in radioactive waste disposal. In: Wang L, Wang MH, Hung YT, Shammas N (eds) Natural resources and control processes. Handbook of environmental engineering, vol 17. Springer, Cham, pp 401–448. Scholar
  7. Abdel Rahman RO, Saleh HM (2018) Introductory chapter: safety aspects in nuclear engineering. In: Abdel Rahman RO, Saleh HM (eds) Principles and applications in nuclear engineering: radiation effects, thermal hydraulics, radionuclide migration in the environment. Intech. ISBN 978-1-78923-616-3CrossRefGoogle Scholar
  8. Abdel Rahman RO, Zaki AA (2009) Assessment of the leaching characteristics of incineration ashes in cement matrix. Chem Eng J 155:698–708CrossRefGoogle Scholar
  9. Abdel Rahman RO, El Kamash AM, Ali HF et al (2011) Overview on recent trends and developments in radioactive liquid waste treatment part 1: sorption/ion exchange technique. Int J Environ Eng Sci 2(1):1–16Google Scholar
  10. Abdel Rahman RO, Kozak MW, Hung YT (2014a) Radioactive pollution and control. In: Hung YT, Wang LK, Shammas NK (eds) Handbook of environment and waste management. World Scientific Publishing, Singapore, pp 949–1027CrossRefGoogle Scholar
  11. Abdel Rahman RO, Elmesawy M, Ashour I et al (2014b) Remediation of NORM and TENORM contaminated sites–review article. Environ Prog Sustain Energy 33(2):588–596CrossRefGoogle Scholar
  12. Abdel Rahman RO, Rakhimov RZ, Rakhimova NR et al (2014c) Cementitious materials for nuclear waste immobilisation. Wiley, New York. ISBN 9781118512005Google Scholar
  13. Abdel Rahman RO, Guskov A, Kozak MW et al (2016) Recent evaluation of early radioactive disposal practice. In: Wang L, Wang MH, Hung YT, Shammas N (eds) Natural resources, control processes. Handbook of environmental engineering, vol 17. Springer, Cham, pp 371–400. Scholar
  14. Abdel Rahman RO, Metwally SS, El-Kamash AM (2019) Life cycle of ion exchangers in nuclear industry: application and management of spent exchangers. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham, pp 3709–3732. Scholar
  15. Adam V, Nowack B (2017) European country-specific probabilistic assessment of nanomaterial flows towards landfilling, incineration and recycling. Environ Sci Nano 4:1961–1973CrossRefGoogle Scholar
  16. Ameen S, Akhtar MS, Kim YS et al (2011) Nanocomposites of poly(1 naphthylamine)/SiO2 and poly(1-naphthylamine)/TiO2: comparative photocatalytic activity evaluation towards methylene blue dye. Appl Catal B Environ.
  17. Amini M, Rahimpour A, Jahanshahi M (2016) Forward osmosis application of modified TiO2-polyamide thin film nanocomposite membranes. Desalin Water Treat 57:14013–14023CrossRefGoogle Scholar
  18. Bahadar S, Alamry KA, Bifari EN et al (2015) Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. J Ind Eng Chem 24:266–275CrossRefGoogle Scholar
  19. Blaney LM, Cinar S, Gupta AKS (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41:1603–1613CrossRefGoogle Scholar
  20. Chaurasia A, Suzhu Y, Henry CKF et al (2015) Properties and applications of polymer nanocomposite. In: Andrew YC (ed) Handbook of manufacturing engineering and technology. Springer, London, pp 43–98Google Scholar
  21. Colorado HA, Hiel C, Hahn HT (2011) Chemically bonded phosphate ceramics composites reinforced with graphite Nanoplatelets. Compos Part A 42:376–384CrossRefGoogle Scholar
  22. Commission notice on technical guidance on the classification of waste (2018) Official Journal of the European Union, C 124/01-c 124/134Google Scholar
  23. Commission of The European Communities Eurostat (2010) Guidance on classification of waste according to EWC-Stat categories, Supplement to the Manual for the Implementation of the Regulation (EC) No 2150/2002 on Waste Statistics, Version 2Google Scholar
  24. Dong TT, Luo HJ, Wang YP et al (2010) Stabilization of Fe–Pd bimetallic nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of paranitrochlorobenzene in water. Desalination.
  25. Duncan TV, Pillai K (2015) Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl Mater Interfaces 7(1):20–39CrossRefGoogle Scholar
  26. EPA. Solidification/Stabilization and its application to waste materials, EPA/530/R-93/012, EPAGoogle Scholar
  27. Fard AK, McKay G, Buekenhoudt A et al (2018) Inorganic membranes: preparation and application for water treatment and desalination, materials. Scholar
  28. Fina A, Camino G (2011) Ignition mechanisms in polymers and polymer nanocomposites. Polym Adv Technol 22:1147–1155CrossRefGoogle Scholar
  29. Gasser MS, Mekhamer HS, Abdel Rahman RO (2016) Optimization of the utilization of Mg/Fe hydrotalcite like compounds in the removal of Sr(II) from aqueous solution. J Environ Chem Eng 4:4619–4630CrossRefGoogle Scholar
  30. Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17CrossRefGoogle Scholar
  31. Ginzburg VV, Weinhold JD, Jog PK et al (2009) Thermodynamics of polymer-clay nanocomposites revisited: compressible self-consistent field theory modeling of melt-intercalated organoclays. Macromolecules 44(22):9089–9095CrossRefGoogle Scholar
  32. Gmbh Ö (2008) Review of the European list of waste, final reportGoogle Scholar
  33. Guo XJ, Chen FH (2005) Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ Sci Technol 39:6808–6818CrossRefGoogle Scholar
  34. Hashim A, Hadi A (2017) Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr J Phys 62(11):978–983CrossRefGoogle Scholar
  35. Hazardous wastes (2007) Industrial waste treatment contemporary practice and vision for the future (ed: Nemerow NL). pp 245–354.
  36. Hoek EMV, Pendergast MTM, Ghosh A K (2017) Nanotechnology-based membranes for water purification, street, sustich, duncan and savage. Nanotechnology applications for clean water, 2nd edn. Scholar
  37. Hong J, He Y (2012) Effects of nano sized zinc oxide on the performance of PVDF micro filtration membranes. Desalination 302:71–79CrossRefGoogle Scholar
  38. Hussain CM, Kharisov B (2017) Advanced environmental analysis-application of nanomaterials. The Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  39. Hussain CM, Mishra AK (2018a) Nanotechnology in environmental science. Wiley-VCH Verlag Gmb H&Co. KGaA, Boschstr. Weinheim, GermanyGoogle Scholar
  40. Hussain CM, Mishra AK (2018b) New polymer nanocomposites for environmental remediation. Elsevier, Amsterdam, NetherlandsCrossRefGoogle Scholar
  41. Iketania K, Sunb RD, Tokib M et al (2003) Sol–gel-derived TiO2/poly (dimethylsiloxane) hybrid films and their photocatalytic activities. J Phys Chem Solids 64(3):507–513CrossRefGoogle Scholar
  42. Isawi H, El-sayed MH, Feng X et al (2016) Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Appl Surf Sci 385:268–281CrossRefGoogle Scholar
  43. Jang J, Lee DS (2016) Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55(13):3852–3860CrossRefGoogle Scholar
  44. Kashiwagi T. Thermal and oxidative degradation of polymers.
  45. Kausar A (2018) Applications of polymer/grapheme nanocomposite membranes: a review. Mater Res Innov. Scholar
  46. Keller AA, McFerran S, Lazareva A et al (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692–1708CrossRefGoogle Scholar
  47. Liang S, Xiao K, Mo Y (2012) A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Membr Sci 394–395:184–192CrossRefGoogle Scholar
  48. Lin CJ, Liou YH, Lo SL (2009) Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene. Chemosphere 74(2):314–319CrossRefGoogle Scholar
  49. Liu XW, Hu Q, Fang Z et al (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25(1):3–8CrossRefGoogle Scholar
  50. Lopez-Cuesta JM, Longuet C (2014) Thermal degradation, flammability, and potential toxicity of polymer nanocomposites. In: Njuguna H, Pielicowski K, Zhu H (eds) Health and environmental safety of nanomaterials. Woodhead, pp 278–310. Scholar
  51. Majka TM, Leszczyńska A, Pielichowski K (2016) Thermal stability and degradation of polymer nanocomposites. In: Huang X, Zhi C (eds) Polymer nanocomposites electrical and thermal properties. Springer, Cham, pp 167–190Google Scholar
  52. Manias E, Polizos G, Nakajima H et al (2006) Fundamentals of polymer nanocomposite technology. In: Morgan AB, Wilkie CA (eds) Flame retardant polymerGoogle Scholar
  53. Nambiar S, Osei EK, Yeow JTW (2013) Polymer nanocomposite-based shielding against diagnostic X-rays. J Appl Polym Sci. Scholar
  54. Ng LY, Abdul Wahab M, Leo CP et al (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33CrossRefGoogle Scholar
  55. Ngomsik AF, Bee A, Draye M et al (2005) Magnetic nano- and microparticles for metal removal and environmental applications: a review. C R Chim 8(6–7):963–970CrossRefGoogle Scholar
  56. Nishihora RK, Rudolph E, Quadri MGN, D. Hotza et al (2019) Asymmetric mullite membranes manufactured by phase-inversion tape casting from polymethylsiloxane and aluminum diacetate.
  57. Pan BC, Pan BJ, Zhang WM, et al (2007a) Chinese patent: CN 200710191355.3Google Scholar
  58. Pan BC, Zhang QR, Zhang WM et al (2007b) Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion. J Colloid Interface Sci 310:99–105CrossRefGoogle Scholar
  59. Pan BC, Su Q, Zhang W M et al (2008) Chinese patent: CN 101224408Google Scholar
  60. Pintilie SC, Tiron LG, Birsan IG et al (2017) Influence of ZnO nanoparticle size and concentration on the polysulfone membrane performance. Mater Plast 54:257–261Google Scholar
  61. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569CrossRefGoogle Scholar
  62. Pourchez J, Chivas-Joly C, Longuet C et al (2018) End-of-life incineration of nanocomposites: new insights into nanofiller partitioning into byproducts and biological outcomes of airborne emission and residual ash. Environ Sci Nano 5:1951–1964CrossRefGoogle Scholar
  63. Rocher V, Siaugue JM, Cabuil V et al (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42(4–5):1290–1298CrossRefGoogle Scholar
  64. Rule P, Balasubramanian K, Gonte RR (2014) Uranium (VI) remediation from aqueous environment using impregnated cellulose beads. J Environ Radioactiv 136:22–29CrossRefGoogle Scholar
  65. Shah P, Murthy CN (2013) Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J Membr Sci 437:90–98CrossRefGoogle Scholar
  66. Shen JN, Yu CC, Ruan HM et al (2013) Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J Membr Sci 442:18–26CrossRefGoogle Scholar
  67. Singh D, Sotiriou GA, Zhang F et al (2016) End-of-life thermal decomposition of nanoenabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environ Sci Nano 3:1293–1305CrossRefGoogle Scholar
  68. Smith PA, Yeomans JA (2009) Benefits of fiber and particulate reinforcement. In: Rawlings RD (ed) Materials science and engineering. Encyclopedia of life support systems, vol 2. EOLSS, Oxford, pp 133–152Google Scholar
  69. Sotiriou GA, Singh D, Zhang F et al (2015) An integrated methodology for the assessment of environmental health implications during thermal decomposition of nano-enabled products. Environ Sci Nano 2:262–272CrossRefGoogle Scholar
  70. Sotiriou GA, Singh D, Zhang F et al (2016) Thermal decomposition of nano-enabled thermoplastics: possible environmental health and safety implications. J Hazard Mater 305:87–95CrossRefGoogle Scholar
  71. Spence R, Shi C (2004) Stabilization/solidification of hazardous, radioactive, and mixed wastes. CRC Press, Boca Raton, p 2205CrossRefGoogle Scholar
  72. Ursino C, Castro-Muñoz R, Drioli E et al (2018) Progress of nanocomposite membranes for water treatment. Membranes. Scholar
  73. Vaia RA, Giannelis EP (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30(25):7990–7999CrossRefGoogle Scholar
  74. Wagner J (2000) Membrane filtration handbook practical tips and hints, 2nd edn. Osmonics, IncGoogle Scholar
  75. Wang Q, Qian HJ, Yang YP et al (2010) Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. J Contam Hydrol 114(1–4):35–42CrossRefGoogle Scholar
  76. Wu LF, Ritchie SMC (2006) Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere 63(2):285–292CrossRefGoogle Scholar
  77. Xu X, Wang Q, Choi HC (2010) Encapsulation of iron nanoparticles with PVP nanofibrous membranes to maintain their catalytic activity. J Membr Sci 348:231–237CrossRefGoogle Scholar
  78. Zhang QR, Pan BC, Pan BJ et al (2008) Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr (HPO3S)2. Environ Sci Technol 42:4140–4145CrossRefGoogle Scholar
  79. Zhang M, Zhang K, de Gusseme B et al (2012) Biogenic silver nanoparticles (bio-Ag) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res 46:2077–2087CrossRefGoogle Scholar
  80. Zhang X, Wang Y, Liu Y et al (2014) Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Appl Surf Sci 316:333–340CrossRefGoogle Scholar
  81. Zhang Y, Wan Y, Shi Y et al (2016) Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling. J Polym Res 23:105–114. Scholar
  82. Zhao X, Li J, Liu C (2017) Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer. Desalination 408:102–109CrossRefGoogle Scholar
  83. Zhu H, Jiang R, Xiao L et al (2009) Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J Hazard Mater 169(1–3):933–940CrossRefGoogle Scholar
  84. Zouboulis AI, Katsoyiannis IA (2002) Arsenic removal using iron oxide loaded alginate beads. Ind Eng Chem Res 41:6149–6155CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. O. Abdel Rahman
    • 1
    Email author
  • O. A. Abdel Moamen
    • 1
  • E. H. El-Masry
    • 1
  1. 1.Hot Laboratory CenterAtomic Energy Authority of EgyptCairoEgypt

Personalised recommendations