Effect of Mechanical Alloying in Polymer-Ceramics Composites

  • M. V. KhumaloEmail author
  • M. C. Khoathane
Living reference work entry


The chapter presents polymer-ceramics composites using mechanical alloying (MA). Ceramics are classified as inorganic and nonmetallic materials that are essential to our daily lifestyle. Many ceramics, both oxides and non-oxides, are currently produced from polymer precursors. Ceramics generally has an amorphous or a nanocrystalline structure and has excellent structural stability, oxidation resistance, creep resistance, high-temperature mechanical properties, and good dielectric properties. Nevertheless, they have a fundamental weakness in that they are easily fractured and require high-temperature processes for the fabrication of integrated substrates. Composites are now one of the most important classes of engineered materials, because they offer several outstanding properties as compared to conventional materials. Composites are a fast-developing segment of the polymer industry; composites filled with materials having at least one dimension in the micro- and nanometer-size range such as nanofillers, nanoclays, or nanotubes and ceramics represent a step change in technology in the composite area. MA is a solid-state powder processing technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill. This technique was originally developed to produce oxide dispersion-strengthened (ODS) nickel- and iron-based superalloys for aerospace applications. MA has been substantiated to be capable of synthesizing a variety of equilibrium and nonequilibrium phases, including nanocrystalline and amorphous materials. Recently MA has been demonstrated to be the most versatile and economical process for the synthesis of nanocrystalline materials, due to its simplicity, low cost, and ability to produce large amount of material. The chapter focuses on the preparation processes; general microstructures; mechanical, chemical, electrical, and optical properties; and potential applications.


Ceramics Alumina Polymer composites Polymer nanocomposites Mechanical alloying Composites Nanocomposites Clays High-energy ball milling 


  1. Abareshi M, Zebarjad SM, Goharshadi E (2009) Crystallinity behavior of MDPE-clay nanocomposites fabricated using ball milling method. J Compos Mater 43(23):2821–2830CrossRefGoogle Scholar
  2. Abareshi M, Zebarjad SM, Goharshadi EK (2010) Study of the morphology and granulometry of polyethylene–clay nanocomposite powders. J Vinyl Addit Technol 16(1):90–97CrossRefGoogle Scholar
  3. Agyei-Tuffour B et al (2014) Synthesis and microstructural characterization of kaolin–polyethylene composites. Polym Compos 35(8):1507–1515CrossRefGoogle Scholar
  4. Ajayan P et al (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265(5176):1212–1214CrossRefGoogle Scholar
  5. Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. WileyGoogle Scholar
  6. Ambrosio-Martín J et al (2015) On the use of ball milling to develop PHBV–graphene nanocomposites (I)—Morphology, thermal properties, and thermal stability. J Appl Polym Sci 132(24)Google Scholar
  7. Awasthi K et al (2002) Ball-milled carbon and hydrogen storage. Int J Hydrog Energy 27(4):425–432CrossRefGoogle Scholar
  8. Azhdar B, Stenberg B, Kari L (2008) Polymer–nanofiller prepared by high-energy ball milling and high velocity cold compaction. Polym Compos 29(3):252–261CrossRefGoogle Scholar
  9. Balasubramanian M (2013) Composite materials and processing. CRC PressGoogle Scholar
  10. Baláž P et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42(18):7571–7637CrossRefGoogle Scholar
  11. Balogh G et al (2013) Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites. J Mater Sci 48(6):2530–2535CrossRefGoogle Scholar
  12. Bao L, Jiang J (2005) Evolution of microstructure and phase of Fe3O4 in system of Fe3O4–polyaniline during high-energy ball milling. Phys B Condens Matter 367(1–4):182–187CrossRefGoogle Scholar
  13. Belitskus D (1993) Fiber and whisker reinforced ceramics for structural applications. CRC PressGoogle Scholar
  14. Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans 1(10):2943–2951Google Scholar
  15. Breval E, Dodds G, Pantano CG (1985) Properties and microstructure of Ni-alumina composite materials prepared by the sol/gel method. Mater Res Bull 20(10):1191–1205CrossRefGoogle Scholar
  16. Budin S et al (2009) Modeling of vial and ball motions for an effective mechanical milling process. J Mater Process Technol 209(9):4312–4319CrossRefGoogle Scholar
  17. Bunsell AR, Renard J (2005) Fundamentals of fibre reinforced composite materials. CRC PressGoogle Scholar
  18. Castrillo P et al (2007) Real dispersion of isolated fumed silica nanoparticles in highly filled PMMA prepared by high energy ball milling. J Colloid Interface Sci 308(2):318–324CrossRefGoogle Scholar
  19. Clauss B, Schawaller D (2006) Modern aspects of ceramic fiber development. In: Advances in science and technology. Trans Tech PublGoogle Scholar
  20. Clyne T (1996) Interfacial effects in particulate, fibrous and layered composite materials. Trans Tech PublGoogle Scholar
  21. Council N.R (2005) High-performance structural fibers for advanced polymer matrix composites. National Academies PressGoogle Scholar
  22. Delogu F, Gorrasi G, Sorrentino A (2017) Fabrication of polymer nanocomposites via ball milling: present status and future perspectives. Prog Mater Sci 86:75–126CrossRefGoogle Scholar
  23. Diez-Pascual A et al (2009) The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Development and characterization of PEEK/CNT composites. Nanotechnology 20(31):315707Google Scholar
  24. Du J, Bai J, Cheng H (2007) The present status and key problems of carbon nanotube based polymer composites. Express Polym Lett 1(5):253–273CrossRefGoogle Scholar
  25. Feest E (1986) Metal matrix composites for industrial application. Mater Des 7(2):58–64CrossRefGoogle Scholar
  26. Fernandez-Bertran JF (1999) Mechanochemistry: an overview. Pure Appl Chem 71(4):581–586CrossRefGoogle Scholar
  27. Ferrara M et al (2007) Influence of the electrical field applied during thermal cycling on the conductivity of LLDPE/CNT composites. Physica E 37(1–2):66–71CrossRefGoogle Scholar
  28. Fried JR (2014) Polymer science and technology. Pearson EducationGoogle Scholar
  29. Gao B et al (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327(1–2):69–75CrossRefGoogle Scholar
  30. Gay D, Hoa SV (2007) Composite materials: design and applications. CRC PressGoogle Scholar
  31. González-Benito J, González-Gaitano G (2008) Interfacial conformations and molecular structure of PMMA in PMMA/silica nanocomposites. Effect of high-energy ball milling. Macromolecules 41(13):4777–4785CrossRefGoogle Scholar
  32. Gorrasi G et al (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J Polym Sci B Polym Phys 45(5):597–606CrossRefGoogle Scholar
  33. Gorrasi G et al (2014) PET–halloysite nanotubes composites for packaging application: preparation, characterization and analysis of physical properties. Eur Polym J 61:145–156CrossRefGoogle Scholar
  34. Gotoh Y et al (2000) Preparation and structure of copper nanoparticle/poly (acrylic acid) composite films. J Mater Chem 10(11):2548–2552CrossRefGoogle Scholar
  35. Gupta RK, Murty B, Birbilis N (2017) High-energy ball milling parameters in production of nanocrystalline Al alloys. In: An overview of high-energy ball milled nanocrystalline aluminum alloys. Springer, pp 7–28Google Scholar
  36. Hedayati M et al (2011) Ball milling preparation and characterization of poly (ether ether ketone)/surface modified silica nanocomposite. Powder Technol 207(1–3):296–303CrossRefGoogle Scholar
  37. Hsu C-Y et al (2017) Mechanical properties of multi-walled carbon nanotube/peek polymer composites at nano scale, 21st International conference on composites materialsGoogle Scholar
  38. Huang J, Yasuda H, Mori H (1999) Highly curved carbon nanostructures produced by ball-milling. Chem Phys Lett 303(1–2):130–134CrossRefGoogle Scholar
  39. Huang Y et al (2003) α-Fe–Al2O3 nanocomposites prepared by sol–gel method. Mater Sci Eng A 359(1–2):332–337CrossRefGoogle Scholar
  40. Huang HC et al (2012) Characterizations of UV-curable montmorillonite/epoxy nanocomposites prepared by a hybrid of chemical dispersion and planetary mechanical milling process. J Appl Polym Sci 123(6):3199–3207CrossRefGoogle Scholar
  41. Ichinose N et al (1987) Introduction to fine ceramics: applications in engineering. Wiley, Chichester/New York, p 169Google Scholar
  42. Jawaid M, Khan MM (2018) Polymer-based nanocomposites for energy and environmental applications. Woodhead PublishingGoogle Scholar
  43. Jung J et al (2010) Preparations and thermal properties of micro-and nano-BN dispersed HDPE composites. Thermochim Acta 499(1–2):8–14CrossRefGoogle Scholar
  44. Kanagaraj S et al (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67(15–16):3071–3077CrossRefGoogle Scholar
  45. Kim Y et al (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355(3–4):279–284CrossRefGoogle Scholar
  46. Kingery WD (1976) Introduction to ceramics. Tylor and FrancisGoogle Scholar
  47. Koch CC, Whittenberger J (1996) Mechanical milling/alloying of intermetallics. Intermetallics 4(5):339–355CrossRefGoogle Scholar
  48. Koo CM et al (2003) Characteristics of polyvinylpyrrolidone-layered silicate nanocomposites prepared by attrition ball milling. Polymer 44(3):681–689CrossRefGoogle Scholar
  49. Laurent C et al (1994) Fe–Cr/Al2O3 metal-ceramic composites: nature and size of the metal particles formed during hydrogen reduction. J Mater Res 9(1):229–235CrossRefGoogle Scholar
  50. Lee SM (1992) Handbook of composite reinforcements. WileyGoogle Scholar
  51. Li Y et al (1999) Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37(3):493–497CrossRefGoogle Scholar
  52. Li C et al (2010) Preparation, characterization and thermal behavior of poly (vinyl alcohol)/organic montmorillonite nanocomposites through solid-state shear pan-milling. J Therm Anal Calorim 103(1):205–212CrossRefGoogle Scholar
  53. Lin IJ, Nadiv S (1979) Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment (mechanochemical reactions). Mater Sci Eng 39(2):193–209CrossRefGoogle Scholar
  54. Lü L, Lai MO (2013) Mechanical alloying. Springer Science & Business MediaGoogle Scholar
  55. Lu D, Pan S (2006) Effects of ball milling dispersion of nano-SiOx particles on impact strength and crystallization behavior of nano-SiOx–poly (phenylene sulfide) nanocomposites. Polym Eng Sci 46(6):820–825CrossRefGoogle Scholar
  56. Lu C, Wang Q (2004) Preparation of ultrafine polypropylene/iron composite powders through pan-milling. J Mater Process Technol 145(3):336–344CrossRefGoogle Scholar
  57. Lu HJ et al (2004) Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling. Polym Int 53(10):1545–1553CrossRefGoogle Scholar
  58. Ma J et al (2002) Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J Appl Polym Sci 83(9):1978–1985CrossRefGoogle Scholar
  59. Ma H et al (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63(11):1617–1628CrossRefGoogle Scholar
  60. Ma PC, Tang BZ, Kim J-K (2008) Conversion of semiconducting behavior of carbon nanotubes using ball milling. Chem Phys Lett 458(1–3):166–169CrossRefGoogle Scholar
  61. Ma PC et al (2009) In-situ amino functionalization of carbon nanotubes using ball milling. J Nanosci Nanotechnol 9(2):749–753CrossRefGoogle Scholar
  62. Ma et al 2010. Dispersion and functionalization of carbon nanotubes for polymer based nanocomposites. A reviewGoogle Scholar
  63. Mallick P (1993) Fiber-reinforced composites: materials. Manufacturing and design. Maneel Dekker IncGoogle Scholar
  64. Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC PressGoogle Scholar
  65. Mazumdar S (2001) Composites manufacturing: materials, product, and process engineering. CRC PressGoogle Scholar
  66. Menzer K et al (2011) Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites. Compos Sci Technol 71(16):1936–1943CrossRefGoogle Scholar
  67. M’Hamed MO, Alduaij OK (2016) Green and effective one-pot synthesis of 5-Oxo-pyrazolidine and 5-Amino-2, 3-dihydro-1H-Pyrazole derivatives through ball milling under catalyst-free and solvent-free conditions. Asian J Chem 28(3):543CrossRefGoogle Scholar
  68. Mio H et al (2002) Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling. Mater Sci Eng A 332(1–2):75–80CrossRefGoogle Scholar
  69. Mio H, Kano J, Saito F (2004) Scale-up method of planetary ball mill. Chem Eng Sci 59(24):5909–5916CrossRefGoogle Scholar
  70. Mohanty P et al (2016) Utilization of chemically synthesized fine powders of SiC/Al2O3 composites for sintering. Mater Manuf Process 31(10):1311–1317CrossRefGoogle Scholar
  71. Moreira FKV, Marconcini JM, Mattoso LHC (2012) Solid state ball milling as a green strategy to improve the dispersion of cellulose nanowhiskers in starch-based thermoplastic matrices. Cellulose 19(6):2049–2056CrossRefGoogle Scholar
  72. Murty B, Ranganathan S (1998) Novel materials synthesis by mechanical alloying/milling. Int Mater Rev 43(3):101–141CrossRefGoogle Scholar
  73. Nathani H, Gubbala S, Misra R (2004) Magnetic behavior of nickel ferrite–polyethylene nanocomposites synthesized by mechanical milling process. Mater Sci Eng B 111(2–3):95–100CrossRefGoogle Scholar
  74. Niihara K (1991) New design concept of structural ceramics. J Ceram Soc Jpn 99(1154):974–982CrossRefGoogle Scholar
  75. Noboru I (1987) Introduction to fine ceramics (application in engineering). WileyGoogle Scholar
  76. Noroozi M, Zebarjad SM (2010) Effects of multiwall carbon nanotubes on the thermal and mechanical properties of medium density polyethylene matrix nanocomposites produced by a mechanical milling method. J Vinyl Addit Technol 16(2):147–151Google Scholar
  77. Norton FH (1974) Elements of ceramics. Tylor and FrancisGoogle Scholar
  78. Olmos D et al (2009) Crystallization and final morphology of HDPE: effect of the high energy ball milling and the presence of TiO2 nanoparticles. Polymer 50(7):1732–1742CrossRefGoogle Scholar
  79. Olmos D, Rodríguez-Gutiérrez E, González-Benito J (2012) Polymer structure and morphology of low density polyethylene filled with silica nanoparticles. Polym Compos 33(11):2009–2021CrossRefGoogle Scholar
  80. Olmos D, González-Gaitano G, González-Benito J (2015) Effect of a silica nanofiller on the structure, dynamics and thermostability of LDPE in LDPE/silica nanocomposites. RSC Adv 5(44):34979–34984CrossRefGoogle Scholar
  81. Pampuch R (1976) Ceramic materials: an introduction to their properties. ElsevierGoogle Scholar
  82. Pantaleón R, González-Benito J (2010) Structure and thermostability of PMMA in PMMA/silica nanocomposites: effect of high-energy ball milling and the amount of the nanofiller. Polym Compos 31(9):1585–1592CrossRefGoogle Scholar
  83. Park S-J, Seo M-K (2011) Interface science and composites, vol 18. AcademicGoogle Scholar
  84. Perrin-Sarazin F et al (2009) Potential of ball milling to improve clay dispersion in nanocomposites. Polym Eng Sci 49(4):651–665CrossRefGoogle Scholar
  85. Pucciariello R, Villani V, Giammarino G (2011) Thermal behaviour of nanocomposites based on linear-low-density poly (ethylene) and carbon nanotubes prepared by high energy ball milling. J Polym Res 18(5):949–956CrossRefGoogle Scholar
  86. Raju P, Murthy S (2013) Preparation and characterization of Ni–Zn ferrite+ polymer nanocomposites using mechanical milling method. Appl Nanosci 3(6):469–475CrossRefGoogle Scholar
  87. Ramadan AR, Esawi AM, Gawad AA (2010) Effect of ball milling on the structure of Na+−montmorillonite and organo-montmorillonite (Cloisite 30B). Appl Clay Sci 47(3–4):196–202CrossRefGoogle Scholar
  88. Ramaseshan R et al (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):7CrossRefGoogle Scholar
  89. Rashidi S, Ataie A (2015) A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route. J Ultrafine Grained Nanostruct Mater 48(2):59–67Google Scholar
  90. Rashidi S, Ataie A (2016) Structural and magnetic characteristics of PVA/CoFe2O4 nano-composites prepared via mechanical alloying method. Mater Res Bull 80:321–328CrossRefGoogle Scholar
  91. Rayson M (1983) Encyclopedia of composite materials and composites. Wiley, New YorkGoogle Scholar
  92. Rodriguez B et al (2007) Solvent-free carbon-carbon bond formations in ball mills. Adv Synth Catal 349(14–15):2213–2233CrossRefGoogle Scholar
  93. Russell K, Hunter B, Heyding R (1997) Monoclinic polyethylene revisited. Polymer 38(6):1409–1414CrossRefGoogle Scholar
  94. Schadler LS, Braun PV (2002) Nanocomposite science and technology. Wiley VCHGoogle Scholar
  95. Searle AB, Grimshaw RW (1959) The chemistry and physics of clays and other ceramic materials. Tylor and FrancisGoogle Scholar
  96. Serra-Gómez R, González-Gaitano G, González-Benito J (2012) Composites based on EVA and barium titanate submicrometric particles: preparation by high-energy ball milling and characterization. Polym Compos 33(9):1549–1556CrossRefGoogle Scholar
  97. Shao W, Wang Q, Ma H (2005) Study of polypropylene/montmorillonite nanocomposites prepared by solid-state shear compounding (S3C) using pan-mill equipment: the morphology of montmorillonite and thermal properties of the nanocomposites. Polym Int 54(2):336–341CrossRefGoogle Scholar
  98. Singer F (2013) Industrial ceramics. SpringerGoogle Scholar
  99. Singh V, Tiwari A, Kulkarni A (1996) Electrical behaviour of attritor processed Al/PMMA composites. Mater Sci Eng B 41(3):310–313CrossRefGoogle Scholar
  100. Sorrentino A et al (2005) Incorporation of Mg–Al hydrotalcite into a biodegradable poly (ε-caprolactone) by high energy ball milling. Polymer 46(5):1601–1608CrossRefGoogle Scholar
  101. Sperling LH, Sperling LH (2006) Introduction to physical polymer science, vol 78. Wiley Online LibraryGoogle Scholar
  102. Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17(9):1061–1082CrossRefGoogle Scholar
  103. Sternitzke M et al (1997) Surface mechanical properties of alumina matrix nanocomposites. Acta Mater 45(10):3963–3973CrossRefGoogle Scholar
  104. Strong AB, Strong B (2000) Plastics: materials and processing. Tylor and FrancisGoogle Scholar
  105. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184CrossRefGoogle Scholar
  106. Tadayyon G, Zebarjad S, Sajjadi S (2011) Effect of mechanical milling on the thermal behavior of polyethylene reinforced with nano-sized alumina. Int Polym Process 26(4):354–360CrossRefGoogle Scholar
  107. Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47(4):355–414CrossRefGoogle Scholar
  108. Terife G, Narh KA (2011) Properties of carbon nanotube reinforced linear low density polyethylene nanocomposites fabricated by cryogenic ball-milling. Polym Compos 32(12):2101–2109CrossRefGoogle Scholar
  109. Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487CrossRefGoogle Scholar
  110. Thomas S et al (2012) Polymer composites: volume 1. Trans R Soc Lond 1805(95):65–87Google Scholar
  111. Tu H, Ye L (2009) Thermal conductive PS/graphite composites. Polym Adv Technol 20(1):21–27CrossRefGoogle Scholar
  112. Vadivel M et al (2017) Enhanced dielectric and magnetic properties of polystyrene added CoFe2O4 magnetic nanoparticles. J Phys Chem Solids 102:1–11CrossRefGoogle Scholar
  113. Veniale F (1990) Ceramic applications of clays and clay minerals. State-of-the-art and perspectives. In: Ceramics today–tomorrow’s ceramics. Proceedings of 7th international meeting on modern ceramics technologies (7th CIMTEC–World Ceramics Congress). Part A Montecatini Terme, 24–30 June 1990Google Scholar
  114. Vertuccio L et al (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75(1):172–179CrossRefGoogle Scholar
  115. Wang Y et al (2005) Study on the preparation and characterization of ultra-high molecular weight polyethylene–carbon nanotubes composite fiber. Compos Sci Technol 65(5):793–797CrossRefGoogle Scholar
  116. Wang G, Chen Y, Wang Q (2008) Structure and properties of poly (ethylene terephthalate)/Na+−montmorillonite nanocomposites prepared by solid state shear milling (S3M) method. J Polym Sci B Polym Phys 46(8):807–817CrossRefGoogle Scholar
  117. Wang Z et al (2010) Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler. J Eur Ceram Soc 30(3):787–792CrossRefGoogle Scholar
  118. Wang R-M, Zheng S-R, Zheng YG (2011) Polymer matrix composites and technology. ElsevierGoogle Scholar
  119. Wu H et al (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21(24):8626–8632CrossRefGoogle Scholar
  120. Wu H, Zhao W, Chen G (2012) One-pot in situ ball milling preparation of polymer/graphene nanocomposites. J Appl Polym Sci 125(5):3899–3903CrossRefGoogle Scholar
  121. Xiao K, Zhang L, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67(2):177–182CrossRefGoogle Scholar
  122. Yang K et al (2006) Mechanical properties and morphologies of polypropylene with different sizes of calcium carbonate particles. Polym Compos 27(4):443–450CrossRefGoogle Scholar
  123. Yang W et al (2018) Effects of high energy ball milling on mechanical and interfacial properties of PBT/nano-Sb2O3 composites. J Adhes Sci Technol 32(3):291–301CrossRefGoogle Scholar
  124. Yang W et al (2019) Preparation and characterization of nano-Sb2O3/poly (butylene terephthalate) composite powders based on high-energy ball milling. J Vinyl Addit Technol 25(1):91–97CrossRefGoogle Scholar
  125. Zhang D (2004) Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci 49(3–4):537–560CrossRefGoogle Scholar
  126. Zhang G et al (2008) Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique. Compos Sci Technol 68(15–16):3073–3080CrossRefGoogle Scholar
  127. Zhu Y et al (2006a) PET/SiO2 nanocomposites prepared by cryomilling. J Polym Sci B Polym Phys 44(8):1161–1167CrossRefGoogle Scholar
  128. Zhu Y et al (2006b) Abs/iron nanocomposites prepared by cryomilling. J Appl Polym Sci 99(2):501–505CrossRefGoogle Scholar
  129. Zhu Y et al (2006c) Polyaniline/iron nanocomposites prepared by cryomilling. J Polym Sci B Polym Phys 44(21):3157–3164CrossRefGoogle Scholar
  130. Zhu Y, Li Z, Zhang D (2008) Electromagnetic nanocomposites prepared by cryomilling of polyaniline and Fe nanoparticles. J Polym Sci B Polym Phys 46(15):1571–1576CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical, Metallurgical and Materials Engineering, Polymer Technology DivisionTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations