Novel Graphene-Based Polymer Nanocomposites

  • Srinivasarao YaragallaEmail author
  • K. B. Bhavitha
  • Nandakumar Kalarikkal
  • Sabu ThomasEmail author
Living reference work entry


This chapter initially emphasizes on various preparation methods of graphene and its structural characterization. Thereafter, fabrication techniques of graphene elastomer nanocomposites are described. Special focus has been given to the various types of elastomer-based composites. The effect of graphene and modified graphene on the mechanical properties of various elastomers has been carefully reviewed with respect to the chemical interactions associated with them. Further, their electrical properties are also thoroughly discussed in the later part of the chapter. Finally, the challenging tasks and future perspectives related to graphene-based elastomer composites are enumerated.


Graphene nanocomposites Modified graphene Mechanical properties Elastomers 


  1. Al-solamy FR, Al-Ghamdi AA, Mahmoud WE (2012) Piezoresistive behavior of graphite nanoplatelets based rubber nanocomposites. Polym Adv Technol 23:478–482CrossRefGoogle Scholar
  2. Boukhvalov DW, Katsnelson MI (2008) J Am Chem Soc 130:10697–10701CrossRefGoogle Scholar
  3. Brodie BC (1859) Philos Trans R Soc Lond 149:249–259CrossRefGoogle Scholar
  4. Cao A, Xu C, Ji L, Dehai W, Wei B (2001) Chem Phys Lett 344:13–17CrossRefGoogle Scholar
  5. Cho D, Lee S, Yang G, Fukushima H, Drzal LT (2005) Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol Mater Eng 290:179–187CrossRefGoogle Scholar
  6. Fan Z, Wang K, Wei T, Yan J, Song L, Shao B (2010) Carbon 48:1670–1692CrossRefGoogle Scholar
  7. Fukushima H (2003) PhD thesis, Michigan State UniversityGoogle Scholar
  8. Gao W, Alemany LB, Ci L, Ajayan PM (2009) Nat Chem 1:403–408. S403/1-S403/20CrossRefGoogle Scholar
  9. Haiqing H, Zhao L, Liu J, Liu Y, Cheng J, Luo J, Liang Y, Tao Y, Wang X, Zhao J (2012) Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene. Polymer 53:3378–3385CrossRefGoogle Scholar
  10. Hamed GR (2000) Reinforcement of rubber. Rubber Chem Technol 73:524–533CrossRefGoogle Scholar
  11. Herrera-Alonso M, Abdala AA, McAllister MJ, Aksay IA, Prud’homme RK (2007) Langmuir 23:10644–10649CrossRefGoogle Scholar
  12. Hirsch A (2009) Angew Chem Int Ed 48:6594–6596CrossRefGoogle Scholar
  13. Ismail MN, Khalaf AI (2011) Styrene–butadiene rubber/graphite powder composites: rheometrical, physicomechanical, and morphological properties. J Appl Polym Sci 120:298–304CrossRefGoogle Scholar
  14. Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Nature 458:877–880CrossRefGoogle Scholar
  15. Kelly TD, Matos GR (2010) Historical statistics for mineral and material commodities in the United States. U.S. Geological Survey data series, 140. USGS publications warehouse, United StatesGoogle Scholar
  16. Khan U, May P, O’Neill A, Coleman JN (2010) Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 48:4035–4041CrossRefGoogle Scholar
  17. Kim CD, Min BK, Jung WS (2009) Carbon 47:1610–1612CrossRefGoogle Scholar
  18. Kim H, Abdala AA, Macosko CW (2010a) Macromolecules 43:6515–6530CrossRefGoogle Scholar
  19. Kim H, Miura Y, Macosko CW (2010b) Chem Mater 22:3441–3450CrossRefGoogle Scholar
  20. Kim JS, Yun JH, Kim I, Shim SE (2011) Electrical properties of graphene/SBR nanocomposite prepared by latex heterocoagulation process at room temperature. J Ind Eng Chem 17:325–330CrossRefGoogle Scholar
  21. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Nature 458:872–876CrossRefGoogle Scholar
  22. Kujawski M, Pearse JD, Smela E (2010) Elastomers filled with exfoliated graphite as compliant electrodes. Carbon 48:2409–2417CrossRefGoogle Scholar
  23. Lee JH, Shin DW, Makotchenko VG, Nazarov AS, Fedorov VE, Kim YH, Choi JY, Kim JM, Yoo JB (2009) Adv Mater 21:4383–4387CrossRefGoogle Scholar
  24. Li JL, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Phys Rev Lett 96:176101/1Google Scholar
  25. Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2009) Carbon 48:255–259CrossRefGoogle Scholar
  26. Lian H, Li S, Liu K, Xu L, Wang K, Guo W (2011) Study on modified graphene/butyl rubber nanocomposites. I. Preparation and characterization. Polym Eng Sci 51:2254–2260CrossRefGoogle Scholar
  27. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Obergfell D, Roth S, Girit C, Zettl A (2007) Solid State Commun 143:101–109CrossRefGoogle Scholar
  28. Novoselov KS et al (2004) Science 306:666–669CrossRefGoogle Scholar
  29. Paci JT, Belytschko T, Schatz GC (2007) J Phys Chem C 111:18099–18111CrossRefGoogle Scholar
  30. Park S, Ruoff RS (2009) Nat Nanotechnol 4:217–224CrossRefGoogle Scholar
  31. Potts JR, Shankar O, Du L, Ruoff RS (2012) Macromolecules 45:6045–6055CrossRefGoogle Scholar
  32. Prud’homme RK, Aksay IA, Adamson D, Abdala A (2007) US Patent, 20,070,092,432Google Scholar
  33. Prud’homme RK, Ozbas B, Aksay IA, Register RA, Adamson DH (2009) Functionalized graphene sheets having high carbon to oxygen ratios. WIPO 2009/134492 A2Google Scholar
  34. Quan H, Zhang B, Zhao Q, Yuen RKK, Li RKY (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos Part A 40:1506–1513CrossRefGoogle Scholar
  35. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRefGoogle Scholar
  36. Roldughin VI, Vysotskii VV (2000) Polymer films, structure and mechanisms of conductivity. Prog Org Coat 39:81–100CrossRefGoogle Scholar
  37. Rollings E, Gweon GH, Zhou SY, Mun BS, McChesney JL, Hussain BS, Fedorov AV, First PN, de Heer WA, Lanzar A (2006) J Phys Chem Solids 67:2172–2177CrossRefGoogle Scholar
  38. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006a) J Phys Chem B 110:8535–8539CrossRefGoogle Scholar
  39. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH (2006b) J Phys Chem B 110:8535–8539CrossRefGoogle Scholar
  40. Shen JW, Chen XM, Huang WY (2003) Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by solution intercalation. J Appl Polym Sci 88: 1864–1869CrossRefGoogle Scholar
  41. Shioyama H (2000) The interaction of two chemical species in the interlayer spacing of graphite. Synth Met 114:1–15CrossRefGoogle Scholar
  42. Shuyang P, Aksay IA, Prud’homme RK (2011) Multifunctional graphene-silicone. Elastomer nanocomposite, method of making the same and uses thereof. US 2011/0178224 A1Google Scholar
  43. Song SH, Jeong HK, Kang YG (2010) J Ind Eng Chem 16:1059–1065CrossRefGoogle Scholar
  44. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RSJ (2006) Mater Chem 16:155–158CrossRefGoogle Scholar
  45. Steurer P, Wissert R, Thomann R, Muelhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30:316–327CrossRefGoogle Scholar
  46. Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB (2005) J Mater Chem 15:974–978CrossRefGoogle Scholar
  47. Wang Y, Chen X, Zhong Y, Zhu F, Loh KP (2009a) Appl Phys Lett 95:063302/1–063302/3Google Scholar
  48. Wang G, Shen X, Wang B, Yao J, Park J (2009b) Carbon 47:1359–1364CrossRefGoogle Scholar
  49. Worsley KA, Ramesh P, Mandal SK, Niyogi S, Itkis ME, Haddon RC (2007) Chem Phys Lett 445:51–56CrossRefGoogle Scholar
  50. Yang J, Tian M, Jia Q, Zhang L, Li X (2006) Influence of graphite particle size and shape on the properties of NBR. J Appl Polym Sci 102:4007–4015CrossRefGoogle Scholar
  51. Yang J, Tian M, Jia Q, Shi J, Zhang L, Lim S, Yu Z, Mai Y (2007) Improved mechanical and functional properties of elastomer/graphite nanocomposites. Acta Mater 55:6372–6382CrossRefGoogle Scholar
  52. Yaragalla S, Meera AP, Kalarikkal N, Thomas S (2015a) Chemistry associated with natural rubber–graphene nanocomposites and its effect on physical and structural properties. Ind Crop Prod 74:792–802CrossRefGoogle Scholar
  53. Yaragalla S, Chandran CS, Kalarikkal N, Subban RHY, Chan CH, Thomas S (2015b) Effect of reinforcement on the barrier and dielectric properties of epoxidized natural rubber–graphene nanocomposites. Polym Eng Sci 55:2439–2447CrossRefGoogle Scholar
  54. Yaragalla S, Sindam B, Abraham J, Raju KCJ, Kalarikkal N, Thomas S (2015c) Fabrication of graphite-graphene-ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J Polym Res 22:137Google Scholar
  55. Yaragalla S, Anilkumar G, Vineeshkumar TV, Kalarikkal N, Thomas S (2015d) Preparation of epoxy graphene and its structural and optical properties. Adv Mater Lett 6:848–852CrossRefGoogle Scholar
  56. Yaragalla S, Rajendran R, Jose J, Almaadeed MA, Kalarikkal N, Thomas S (2016) Preparation and characterization of green graphene using grape seed extract for bioapplications. Mater Sci Eng C 65:345. Scholar
  57. Yaragalla S, Mishra RK, Thomas S, Kalarikkal N, Maria HJ (2018) Carbon-based nanofillers and their rubber nanocomposites, 1st edn. Carbon nano-objects. Elsevier, Amsterdam, Netherlands, p 402Google Scholar
  58. Yaragalla S, Mishra RK, Thomas S, Kalarikkal N, Maria HJ (2019a) Carbon-based nanofillers and their rubber nanocomposites, 1st edn. Fundamentals and applications. Elsevier, Amsterdam, Netherlands, p 496Google Scholar
  59. Yaragalla S, Rajendran R, AlMaadeed MA, Kalarikkal N, Thomas S (2019b) Mater Sci Eng C 102:305–314CrossRefGoogle Scholar
  60. Yi YB, Tawerghi E (2009) Geometric percolation thresholds of interpenetrating plates in three-dimensional space. Phys Rev E 79:041134/1–041134/6Google Scholar
  61. Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296:590–602CrossRefGoogle Scholar
  62. Zhang LQ, Jia DM (2004) The nano-reinforcing technique and science of rubber. In: Proceedings of symposium international rubber conference on Chem Ind Eng Soc China, pp 46–56Google Scholar
  63. Zhang W, Cui J, Tao CA, Wu Y, Li Z, Ma L, Wen Y, Li G (2009a) Angew Chem Int Ed 48:5864–5868CrossRefGoogle Scholar
  64. Zhang WH, Carravetta V, Li ZY, Luo Y, Yang JL (2009b) J Chem Phys 131:244505/1–244505/6Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.International and Inter-University Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia
  2. 2.Istituto Italiano di TecnologiaSmart Materials GroupGenovaItaly
  3. 3.Department of PhysicsSt Teresa’s CollegeErnakulamIndia
  4. 4.Department of PhysicsMahatma Gandhi UniversityKottayamIndia

Personalised recommendations