Advertisement

Composites Based on Shape Memory Materials

  • Ali Nabipour ChakoliEmail author
Living reference work entry

Abstract

Shape memory properties provide a very attractive insight into materials science, opening unexplored horizons and giving access to unconventional functions in every material class (metals, polymers, and ceramics). Since the discovery of shape memory materials (SMMs), there has been a continuous quest for ways to application of SMMs with the extraordinary properties. Two groups of materials have shown the shape memory effect: shape memory metal alloys (SMAs) and shape memory polymers (SMPs). The intermetallic alloys such as NiTi can be extremely compliant while retaining the strength of metals and can convert thermal energy to mechanical work. The unique properties of SMAs result from a reversible solid-to-solid phase transformation. Among the commercially available SMAs, NiTi alloys in the form of wires, ribbons, or particles are the most widely used because of their excellent mechanical properties and shape memory performance. Also, SMPs can rapidly change their shapes from a temporary shape to their original (or permanent) shapes under appropriate stimulus such as temperature, light, electric field, magnetic field, pH, specific ions, or enzyme. Thermally active SMP belongs to a kind of functional material that can hold a temporary deformation at a temperature below the switching temperature and recover the original shape when it is heated to a temperature above the switching temperature.

The integration of SMMs into composite structures has resulted in many benefits, which include actuation, vibration control, damping, sensing, and self-healing. The SMMs composite complexity that includes strong thermomechanical coupling, large inelastic deformations, and variable thermoelastic properties will have many applications in industry. Nonetheless, as SMMs are becoming increasingly accepted in engineering applications, a similar trend for SMM composites is expected in aerospace, automotive, and energy conversion and storage-related applications. Reinforcement of SMMs with particles and nanoparticles such as carbon nanotubes is new insight to find new extraordinary properties for SMAs.

Keywords

Shape memory alloys Shape memory polymers Composites Nanomaterials Nanocomposites 

References

  1. Amirian M, Sui J, Chakoli AN, Cai W (2011) Properties and degradation behavior of surface functionalized MWCNT/poly (L-lactide-co-ε-caprolactone) biodegradable nanocomposites. J Appl Polym Sci 122(5):3133–3144CrossRefGoogle Scholar
  2. Amirian M, Chakoli AN, Sui J, Cai W (2012a) Enhanced shape memory effect of poly (L-lactide-co-ε-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs. J Polym Res 19(2):9777CrossRefGoogle Scholar
  3. Amirian M, Chakoli AN, Sui J, Cai W (2012b) Enhanced shape memory effect of poly (L-lactide-co-ε-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs. J Polym Res 19(2):1–10CrossRefGoogle Scholar
  4. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32CrossRefGoogle Scholar
  5. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym Int 57(4):651–659CrossRefGoogle Scholar
  6. Bellin I, Kelch S, Lendlein A (2007) Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J Mater Chem 17(28):2885–2891CrossRefGoogle Scholar
  7. Belmonte A, Russo C, Ambrogi V, Fernández-Francos X, De la Flor S (2017) Epoxy-based shape-memory actuators obtained via dual-curing of off-stoichiometric “thiol–epoxy” mixtures. Polymers 9(3):113CrossRefGoogle Scholar
  8. Cai W, Feng X, Sui J (2012) Preparation of multi-walled carbon nanotube-reinforced TiNi matrix composites from elemental powders by spark plasma sintering. Rare Metals 31(1):48–50CrossRefGoogle Scholar
  9. Chakoli AN, He J, Chayjan MA, Huang Y, Zhang B (2015) Irradiation of poly (L-lactide) biopolymer reinforced with functionalized MWCNTs. RSC Adv 5(68):55544–55549CrossRefGoogle Scholar
  10. Chen G-X, Shimizu H (2008) Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly (L-lactide) matrix. Polymer 49(4):943–951CrossRefGoogle Scholar
  11. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26(5):412–416CrossRefGoogle Scholar
  12. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652CrossRefGoogle Scholar
  13. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67(1):55–60CrossRefGoogle Scholar
  14. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRefGoogle Scholar
  15. Fei G, Li G, Wu L, Xia H (2012) A spatially and temporally controlled shape memory process for electrically conductive polymer–carbon nanotube composites. Soft Matter 8(19):5123–5126CrossRefGoogle Scholar
  16. Feng J, Cai W, Sui J, Li Z, Wan J, Chakoli AN (2008) Poly (L-lactide) brushes on magnetic multiwalled carbon nanotubes by in-situ ring-opening polymerization. Polymer 49(23):4989–4994CrossRefGoogle Scholar
  17. Ferrara F, Gimelli A, Luongo A (2014) Small-scale concentrated solar power (CSP) plant: ORCs comparison for different organic fluids. Energy Procedia 45:217–226CrossRefGoogle Scholar
  18. Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Shape memory polymer nanocomposites. Acta Mater 50(20):5115–5126CrossRefGoogle Scholar
  19. Geng L-H, Peng X-F, Jing X, Li L-W, Huang A, Xu B-P, Chen B-Y, Mi H-Y (2016) Investigation of poly (L-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. J Mater Res 31(3):348–359CrossRefGoogle Scholar
  20. Gunes IS, Cao F, Jana SC (2008) Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer 49(9):2223–2234CrossRefGoogle Scholar
  21. Guo B, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. SCIENCE CHINA Chem 57(4):490–500CrossRefGoogle Scholar
  22. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G: J Aerosp Eng 221(4):535–552CrossRefGoogle Scholar
  23. Hosoda H, Takeuchi S, Inamura T, Wakashima K (2004) Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles. Sci Technol Adv Mater 5(4):503CrossRefGoogle Scholar
  24. Hu J (2007) Shape memory polymers and textiles. Elsevier, AmsterdamCrossRefGoogle Scholar
  25. Huang W, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20(17):3367–3381CrossRefGoogle Scholar
  26. Ishida K, Hortensius R, Luo X, Mather PT (2012) Soft bacterial polyester-based shape memory nanocomposites featuring reconfigurable nanostructure. J Polym Sci B Polym Phys 50(6):387–393CrossRefGoogle Scholar
  27. Jeon HG, Mather PT, Haddad TS (2000) Shape memory and nanostructure in poly (norbornyl-POSS) copolymers. Polym Int 49(5):453–457CrossRefGoogle Scholar
  28. Jung YC, Yoo HJ, Kim YA, Cho JW, Endo M (2010a) Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes. Carbon 48(5):1598–1603CrossRefGoogle Scholar
  29. Jung YC, Kim HH, Kim YA, Kim JH, Cho JW, Endo M, Dresselhaus MS (2010b) Optically active multi-walled carbon nanotubes for transparent, conductive memory-shape polyurethane film. Macromolecules 43(14):6106–6112CrossRefGoogle Scholar
  30. Kelch S, Steuer S, Schmidt AM, Lendlein A (2007) Shape-memory polymer networks from oligo [(ε-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 8(3):1018–1027CrossRefGoogle Scholar
  31. Khan SA, Gambhir S, Ahmad A (2014) Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein J Nanotechnol 5:249CrossRefGoogle Scholar
  32. Kim H-S, Park BH, Yoon J-S, Jin H-J (2007) Thermal and electrical properties of poly (L-lactide)-graft-multiwalled carbon nanotube composites. Eur Polym J 43(5):1729–1735CrossRefGoogle Scholar
  33. Kim MS, Jun JK, Jeong HM (2008) Shape memory and physical properties of poly (ethyl methacrylate)/Na-MMT nanocomposites prepared by macroazoinitiator intercalated in Na-MMT. Compos Sci Technol 68(7–8):1919–1926CrossRefGoogle Scholar
  34. Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20(17):3404–3415CrossRefGoogle Scholar
  35. Kumar SK, Jouault N, Benicewicz B, Neely T (2013) Nanocomposites with polymer grafted nanoparticles. Macromolecules 46(9):3199–3214CrossRefGoogle Scholar
  36. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18CrossRefGoogle Scholar
  37. Le H, Kolesov I, Ali Z, Uthardt M, Osazuwa O, Ilisch S, Radusch H-J (2010) Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites. J Mater Sci 45(21):5851–5859CrossRefGoogle Scholar
  38. Lee SK, Yoon SH, Chung I, Hartwig A, Kim BK (2011) Waterborne polyurethane nanocomposites having shape memory effects. J Polym Sci, Part A: Polym Chem 49(3):634–641CrossRefGoogle Scholar
  39. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41(12):2034–2057CrossRefGoogle Scholar
  40. Lendlein A, Jiang H, Jünger O, Langer R (2005a) Light-induced shape-memory polymers. Nature 434(7035):879CrossRefGoogle Scholar
  41. Lendlein A, Schmidt AM, Schroeter M, Langer R (2005b) Shape-memory polymer networks from oligo (ϵ-caprolactone) dimethacrylates. J Polym Sci, Part A: Polym Chem 43(7):1369–1381CrossRefGoogle Scholar
  42. Leng J, Lv H, Liu Y, Du S (2008a) Synergic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity. J Appl Phys 104(10):104917CrossRefGoogle Scholar
  43. Leng J, Lan X, Liu Y, Du S, Huang W, Liu N, Phee S, Yuan Q (2008b) Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl Phys Lett 92(1):014104CrossRefGoogle Scholar
  44. Leng J, Wu X, Liu Y (2009) Infrared light-active shape memory polymer filled with nanocarbon particles. J Appl Polym Sci 114(4):2455–2460CrossRefGoogle Scholar
  45. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135CrossRefGoogle Scholar
  46. Lester BT, Baxevanis T, Chemisky Y, Lagoudas DC (2015) Review and perspectives: shape memory alloy composite systems. Acta Mech 226(12):3907–3960CrossRefGoogle Scholar
  47. Li D, Luo Y (2001) Effects of TiN nano-particles on porosity and wear behavior of TiC/TiNi tribo composite. J Mater Sci Lett 20(24):2249–2252CrossRefGoogle Scholar
  48. Liu C, Mather PT (2004) High thermal conductivity shape memory polymers. In: ANTEC-CONFERENCE PROCEEDINGS. UNKNOWN, pp 3080–3084Google Scholar
  49. Liu Y, Gall K, Dunn ML, McCluskey P (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36(10):929–940CrossRefGoogle Scholar
  50. Liu Y, Lv H, Lan X, Leng J, Du S (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 69(13):2064–2068CrossRefGoogle Scholar
  51. Liu XH, Zheng H, Zhong L, Huang S, Karki K, Zhang LQ, Liu Y, Kushima A, Liang WT, Wang JW (2011) Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett 11(8):3312–3318CrossRefGoogle Scholar
  52. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001CrossRefGoogle Scholar
  53. Lu H, Gou J (2012) Fabrication and electroactive responsive behavior of shape–memory nanocomposite incorporated with self-assembled multiwalled carbon nanotube nanopaper. Polym Adv Technol 23(12):1529–1535CrossRefGoogle Scholar
  54. Lu X, Cai W, Gao Z (2008) Shape-memory behaviors of biodegradable poly (L-lactide-co-ϵ-caprolactone) copolymers. J Appl Polym Sci 108(2):1109–1115CrossRefGoogle Scholar
  55. Lu H, Liu Y, Gou J, Leng J, Du S (2010a) Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer. Smart Mater Struct 19(7):075021CrossRefGoogle Scholar
  56. Lu H, Liu Y, Gou J, Leng J, Du S (2010b) Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite. Appl Phys Lett 96(8):084102CrossRefGoogle Scholar
  57. Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4(4):310CrossRefGoogle Scholar
  58. Luo X, Mather PT (2010) Conductive shape memory nanocomposites for high speed electrical actuation. Soft Matter 6(10):2146–2149CrossRefGoogle Scholar
  59. Mather PT, Jeon HG, Haddad T (2000) Strain recovery in POSS hybrid thermoplastics. POLYMER PREPRINTS-AMERICA 41(1):528–529Google Scholar
  60. McKeon-Fischer K, Freeman J (2011) Characterization of electrospun poly (L-lactide) and gold nanoparticle composite scaffolds for skeletal muscle tissue engineering. J Tissue Eng Regen Med 5(7):560–568CrossRefGoogle Scholar
  61. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A: Appl Sci Manuf 40(11):1661–1672CrossRefGoogle Scholar
  62. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221CrossRefGoogle Scholar
  63. Miaudet P, Derré A, Maugey M, Zakri C, Piccione PM, Inoubli R, Poulin P (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854):1294–1296CrossRefGoogle Scholar
  64. Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136CrossRefGoogle Scholar
  65. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci 103(10):3540–3545CrossRefGoogle Scholar
  66. Murphy EB, Wudl F (2010) The world of smart healable materials. Prog Polym Sci 35(1–2):223–251CrossRefGoogle Scholar
  67. Nabipour Chakoli A, Wan J, Feng JT, Amirian M, Sui JH, Cai W (2009) Functionalization of multiwalled carbon nanotubes for reinforcing of poly (l-lactide-co-ε-caprolactone) biodegradable copolymers. Appl Surf Sci 256:170–177CrossRefGoogle Scholar
  68. Ni Q-Q, C-s Z, Fu Y, Dai G, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81(2):176–184CrossRefGoogle Scholar
  69. Nitta S, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14(1):1629–1654CrossRefGoogle Scholar
  70. O’Handley RC, Murray S, Marioni M, Nembach H, Allen S (2004) Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials. J Appl Phys 87(9):4712–4717CrossRefGoogle Scholar
  71. Ohki T, Ni Q-Q, Ohsako N, Iwamoto M (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos A: Appl Sci Manuf 35(9):1065–1073CrossRefGoogle Scholar
  72. Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38(10–11):1487–1503CrossRefGoogle Scholar
  73. Paderni K, Pandini S, Passera S, Pilati F, Toselli M, Messori M (2012) Shape-memory polymer networks from sol–gel cross-linked alkoxysilane-terminated poly (ε-caprolactone). J Mater Sci 47(10):4354–4362CrossRefGoogle Scholar
  74. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27(7):1143–1169CrossRefGoogle Scholar
  75. Rogers CA, Liang C, Fuller CR (1991) Modeling of shape memory alloy hybrid composites for structural acoustic control. J Acoust Soc Am 89(1):210–220CrossRefGoogle Scholar
  76. Sabzi M, Babaahmadi M, Rahnama M (2017) Thermally and electrically triggered triple-shape memory behavior of poly (vinyl acetate)/poly (lactic acid) due to graphene-induced phase separation. ACS Appl Mater Interfaces 9(28):24061–24070CrossRefGoogle Scholar
  77. Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46(3):281–283CrossRefGoogle Scholar
  78. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172CrossRefGoogle Scholar
  79. Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8(9):2976–2978CrossRefGoogle Scholar
  80. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640CrossRefGoogle Scholar
  81. Takahashi T, Hayashi N, Hayashi S (1996) Structure and properties of shape-memory polyurethane block copolymers. J Appl Polym Sci 60(7):1061–1069CrossRefGoogle Scholar
  82. Thamburaja P, Anand L (2001) Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids 49(4):709–737CrossRefGoogle Scholar
  83. Tobushi H, Hayashi S, Pieczyska E, Date K, Nishimura Y (2011) Three-way actuation of shape memory composite. Arch Mech 63(5–6):443–457Google Scholar
  84. Valavanidis A, Vlachogianni T (2016) Engineered nanomaterials for pharmaceutical and biomedical products new trends, benefits and opportunities. Pharm Bioprocessing 4(1):13–24Google Scholar
  85. Venkatesan J, Kim S-K (2014) Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol 10(10):3124–3140CrossRefGoogle Scholar
  86. Wan J, Cai W, Feng J, Meng X, Liu E (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17(12):1188–1192CrossRefGoogle Scholar
  87. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212CrossRefGoogle Scholar
  88. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B 110:442–458CrossRefGoogle Scholar
  89. Wischke C, Lendlein A (2010) Shape-memory polymers as drug carriers – a multifunctional system. Pharm Res 27(4):527–529CrossRefGoogle Scholar
  90. Wischke C, Neffe AT, Steuer S, Lendlein A (2009) Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J Control Release 138(3):243–250CrossRefGoogle Scholar
  91. Xu X, Chen X, Liu A, Hong Z, Jing X (2007) Electrospun poly (L-lactide)-grafted hydroxyapatite/poly (L-lactide) nanocomposite fibers. Eur Polym J 43(8):3187–3196CrossRefGoogle Scholar
  92. Xu B, Huang WM, Pei YT, Chen ZG, Kraft A, Reuben R, De Hosson JTM, Fu YQ (2009) Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur Polym J 45(7):1904–1911CrossRefGoogle Scholar
  93. Zeng C, Seino H, Ren J, Yoshie N (2014) Polymers with multishape memory controlled by local glass transition temperature. ACS Appl Mater Interfaces 6(4):2753–2758CrossRefGoogle Scholar
  94. Zhang P, Hong Z, Yu T, Chen X, Jing X (2009) In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with poly (L-lactide). Biomaterials 30(1):58–70CrossRefGoogle Scholar
  95. Zhang H, Xia H, Zhao Y (2012) Optically triggered and spatially controllable shape-memory polymer–gold nanoparticle composite materials. J Mater Chem 22(3):845–849CrossRefGoogle Scholar
  96. Zhang Y, Nayak RT, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13(10):1633–1645CrossRefGoogle Scholar
  97. Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly (D, L-lactide)/hydroxyapatite composites. Biomaterials 27(24):4288–4295CrossRefGoogle Scholar
  98. Zheng N, Fang G, Cao Z, Zhao Q, Xie T (2015) High strain epoxy shape memory polymer. Polym Chem 6(16):3046–3053CrossRefGoogle Scholar
  99. Zhu Y, Hu J, Luo H, Young RJ, Deng L, Zhang S, Fan Y, Ye G (2012) Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 8(8):2509–2517CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nuclear Safety and Reactor Research SchoolNuclear Science and Technology Research InstituteTehranIran

Personalised recommendations