Encyclopedia of Solid Earth Geophysics

Living Edition
| Editors: Harsh K. Gupta

Sar Interferometry

  • Masato FuruyaEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-10475-7_97-1




Acronym standing for Radio Detection and Ranging. A technique to detect any targets and measure the distance to them, based on the round-trip time of microwave (radio wave) pulses between the antenna and the targets. SAR. Acronym standing for Synthetic Aperture Radar. A technique to image any ground surfaces, using airborne or spaceborne radar sensor. Its high spatial resolution is achieved by collecting numerous return pulses from each target in sight and by effectively synthesizing large antenna size.


Acronym standing for Interferometric SAR. A technique to image surface topography and ground displacements, using phase values of two or more SAR images.


Crustal deformation data have been traditionally acquired by ground-based geodetic techniques such as leveling, triangulation, and electro-optic distance...

This is a preview of subscription content, log in to check access.


  1. Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Problems 14:R1CrossRefGoogle Scholar
  2. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40:2375CrossRefGoogle Scholar
  3. Burgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169CrossRefGoogle Scholar
  4. Cloude SR, Papathanassiou KP (1998) Polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 36:1551CrossRefGoogle Scholar
  5. Cumming IG, Wong FH (2005) Digital processing of synthetic aperture radar data: algorithm and implementation. Artech House, BostonGoogle Scholar
  6. Curlander JC, McDonough RN (1991) Synthetic aperture radar: systems and signal processing. Wiley interscience, New YorkGoogle Scholar
  7. Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004CrossRefGoogle Scholar
  8. Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38:2202CrossRefGoogle Scholar
  9. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8CrossRefGoogle Scholar
  10. Fialko Y, Simons M, Agnew D (2001) The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7.1 hector mine earthquake, California, from space geodetic observations. Geophys Res Lett 28:3063CrossRefGoogle Scholar
  11. Foster J, Brooks B, Cherubini T, Shacat C, Businger S, Werner CL (2006) Mitigating atmospheric noise for InSAR using a high resolution weather model. Geophys Res Lett 33:L16304CrossRefGoogle Scholar
  12. Furuya M, Mueller K, Wahr J (2007) Active salt tectonics in the Needles District, Canyonlands (Utah) as detected by interferometric synthetic aperture radar and point target analysis: 1992–2002. J Geophys Res 112:B06418CrossRefGoogle Scholar
  13. Ghilia DC, Pritt MD (1998) Two dimensional phase unwrapping: theory, algorithms, and software. Wiley, New YorkGoogle Scholar
  14. Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer, DordrechtCrossRefGoogle Scholar
  15. Hooper A, Zebker H, Segall P, Kempes B (2004) A new method for measuring deformation on volcanos and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611CrossRefGoogle Scholar
  16. Kobayashi T, Takada Y, Furuya M, Murakami M (2009) Location and types of ruptures involved in the 2008 Sichuan earthquake inferred from SAR image matching. Geophys Res Lett 36:L07302Google Scholar
  17. Lundgren P, Usai S, Sansosti E, Lanari R, Tesauro M, Fornaro G, Berardino P (2001) Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera. J Geophys Res 106(B9):19355CrossRefGoogle Scholar
  18. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36:331CrossRefGoogle Scholar
  19. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Raboute T (1993) The displacement field of the landers earthquake mapped by radar interferometry. Nature 364:138CrossRefGoogle Scholar
  20. Massonnet D, Vadon H, Rossi M (1996) Reduction of the need for phase unwrapping in radar interferometry. IEEE Trans Geosci Remote Sens 34:489CrossRefGoogle Scholar
  21. Matter KE, Gray AL (2002) Reducing ionospheric electron density errors in satellite radar interferometry applications. Can J Remote Sens 28:583Google Scholar
  22. Michel R, Avouac J-P, Taboury J (1999) Measuring ground displacements from SAR amplitude images: application to the landers earthquake. Geophys Res Lett 26:875CrossRefGoogle Scholar
  23. Motagh M, Wang R, Walter TR, Bürgmann R, Fielding E, Anderssohn J, Zschau J (2008) Coseismic slip model of the 2007 august pisco earthquake (Peru) as constrained by wide swath radar observations. Geophys J Int 174:842CrossRefGoogle Scholar
  24. Onn F, Zebker HA (2006) Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. J Geophys Res 111:B09102CrossRefGoogle Scholar
  25. Pritchard ME (2006) InSAR, a tool for measuring Earth’s surface deformation. Phys Today 59(7):68CrossRefGoogle Scholar
  26. Raucoules D, de Michele M (2010) Assessing ionospheric influence on L-band SAR data: implications on Coseismic displacement measurements of the 2008 Sichuan earthquake. IEEE Geosci Remote Sens Letters 7:286CrossRefGoogle Scholar
  27. Rosen PA, Hensley S, Zebker HA, Webb FH, Fielding EJ (1996) Surface deformation and coherence measurements of Kilauea volcano, Hawaii, from SIR-C radar interferometry. J Geophys Res 101(E10):23109CrossRefGoogle Scholar
  28. Schmidt DA, Burgmann R (2003) Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J Geophys Res 108(B9):2416CrossRefGoogle Scholar
  29. Simons M, Rosen PA (2007) Interferometric synthetic aperture radar geodesy. In: Herring TA (ed) Treatise on geophysics, vol 3. Elsevier, New York, pp 391–446CrossRefGoogle Scholar
  30. Tobita M, Murakami M, Nakagawa H, Yarai H, Fujiwara S (2001a) Two-dimensional field of three-dimensional components of deformations and velocities, and volume change around Usu volcano associated with the 2000 eruption by matching of SAR images (in Japanese). J Geogr Survey Inst 95:37Google Scholar
  31. Tobita M, Murakami M, Nakagawa H, Yarai H, Fujiwara S, Rosen PA (2001b) 3D surface deformation of the 2000 Usu Eruption measured by matching of SAR images. Geophys Res Lett 28:4291CrossRefGoogle Scholar
  32. Werner CL, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping, paper presented at IGARSS’03. Geoscience Remote Sensing Society, ToulouseGoogle Scholar
  33. Zebker HA, Rosen PA, Goldstein RM, Gabriel A, Werner CL (1994) On the derivation of coseismic displacement fields using differential radar interferometry: the landers earthquake. J Geophys Res 99(B10):19617–19634CrossRefGoogle Scholar
  34. Zhou XB, Chang NB, Li SS (2009) Applications of SAR interferometry in Earth and environmental science research. Sensors 9:1876CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Natural History SciencesHokkaido UniversitySapporoJapan