Encyclopedia of Solid Earth Geophysics

Living Edition
| Editors: Harsh K. Gupta

Gravity, Data to Anomalies

  • Ron HackneyEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-10475-7_78-1
  • 6 Downloads

Definition

Gravity anomaly. The difference between gravity measured at a point and a model value at that point that is based on the normal gravity of a reference ellipsoid, corrected for the gravity effects of elevation above the reference ellipsoid and the mass of rock between the point and the reference ellipsoid.

Introduction

The study of anomalous gravity has its roots in geodesy where it is used to determine the shape of the Earth (see “Geodesy, Physical” and “Geodesy, Figure of the Earth”). Gravity anomalies have also proved extremely useful in the interpretation of subsurface geological structure at various scales. Like many geophysical techniques, resource exploration has been the greatest driver of the use of gravity data (e.g., Nabighian et al. 2005). Gravity anomalies are often useful in the early stages of an exploration program as they provide insight into the form of low-density sediment accumulations (basins) or the location of high-density ore deposits. At larger...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Argast D, Bacchin M, Tracey R (2009) An extension of the closed-form solution for the gravity curvature (Bullard B) correction in the marine and airborne cases. ASEG Extended Abstracts 2009(1):6.  https://doi.org/10.1071/ASEG2009ab129CrossRefGoogle Scholar
  2. Bullard EC (1936) Gravity measurements in East Africa. Philos Trans R Soc Lond 235:486–497Google Scholar
  3. Featherstone WE, Dentith MC (1997) A geodetic approach to gravity data reduction. Comput Geosci 23(10):1063–1070CrossRefGoogle Scholar
  4. Hackney RI, Featherstone WE (2003) Geodetic versus geophysical perspectives of the “gravity anomaly”. Geophys J Int 154:35–43. See also: Erratum, 2003. Geophysical Journal International, 154: 596; Corrigendum, 2006. Geophysical Journal International, 167: 585CrossRefGoogle Scholar
  5. Hammer S (1939) Terrain corrections for gravimeter stations. Geophysics 4:184–194CrossRefGoogle Scholar
  6. Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560CrossRefGoogle Scholar
  7. Hinze WJ, Aiken C, Brozena J, Coakley B, Dater D, Flanagan G, Forsberg R, Hildenbrand T, Keller GR, Kellogg J, Kucks R, Li X, Mainville A, Morin R, Pilkington M, Plouff D, Ravat D, Roman D, Urrutia-Fucugauchi J, Véronneau M, Webring M, Winester D (2005) New standards for reducing gravity data: the North American gravity database. Geophysics 70(4):J25–J32.  https://doi.org/10.1190/1.1988183CrossRefGoogle Scholar
  8. Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer, ViennaGoogle Scholar
  9. Kuhn M, Featherstone WE, Kirby JF (2009) Complete spherical Bouguer anomalies over Australia. Aust J Earth Sci 56(2):213–223.  https://doi.org/10.1080/08120090802547041CrossRefGoogle Scholar
  10. LaFehr TR (1991a) Standardization in gravity reduction. Geophysics 56(8):1170–1178CrossRefGoogle Scholar
  11. LaFehr TR (1991b) An exact solution for the gravity curvature (Bullard B) correction. Geophysics 56(8):1179–1184CrossRefGoogle Scholar
  12. Li X, Götze H-J (2001) Ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics 66(6):1660–1668CrossRefGoogle Scholar
  13. Mikuška J, Pašteka R, Marušiak I (2006) Estimation of distant relief effect in gravimetry. Geophysics 71(6):J59–J69.  https://doi.org/10.1190/1.2338333CrossRefGoogle Scholar
  14. Morelli C, Ganter C, Hankasalo T, McConnell RK, Tanner JB, Szabo B, Uotila U, Whalen CT (1974) The international gravity standardization net 1971. International Association of Geodesy. Special publication number, 4. International Association of Geodesy, ParisGoogle Scholar
  15. Moritz H (2000) Geodetic reference system 1980. J Geod 74(1):128–162.  https://doi.org/10.1007/s001900050278CrossRefGoogle Scholar
  16. Nabighian MN, Ander ME, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Pearson WC, Peirce JW, Phillips JD, Rude ME (2005) Historical development of the gravity method in exploration. Geophysics 70(6):63ND–89ND.  https://doi.org/10.1190/1.2133785CrossRefGoogle Scholar
  17. Nowell DAG (1999) Gravity terrain corrections – an overview. J Appl Geophys 42:117–134CrossRefGoogle Scholar
  18. Schmidt S, Götze H-J (2006) Bouguer and isostatic maps of the Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götzte H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes: active subduction orogeny. Springer, Berlin/Heidelberg. Frontiers in Earth Sci, vol 1, pp 559–562Google Scholar
  19. Tenzer R, Hamayun K, Vajda P (2009) Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J Geophys Res 114:B05408.  https://doi.org/10.1029/2008JB006016.CrossRefGoogle Scholar
  20. Tracey R, Bacchin M, Wynne P (2007) AAGD07: a new absolute gravity datum for Australian gravity and new standards for the Australian National Gravity Database. ASEG Extended Abstracts 2007(1):1–3.  https://doi.org/10.1071/ASEG2007ab149CrossRefGoogle Scholar
  21. Trumbull RB, Riller U, Oncken O, Scheuber E, Munier K, Hongn F (2006) The time – space distribution of Cenozoic volcanism in the Central Andes: a new data compilation and some tectonic implications. In: Oncken O, Chong G, Franz G, Giese P, Götzte H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes: active subduction orogeny. Springer, Berlin/Heidelberg. Frontiers in Earth Sci, vol 1, pp 29–43Google Scholar
  22. Wenzel H (1985) Hochauflosende Kugelfunktionsmodelle fur des Gravitationspotential der Erde [1]. Wissenschaftliche arbeiten der Fachrichtung Vermessungswesen der Universitat, Hannover, p 137Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Petroleum and Marine DivisionGeoscience AustraliaCanberraAustralia