Encyclopedia of Solid Earth Geophysics

Living Edition
| Editors: Harsh K. Gupta

GPS, Tectonic Geodesy

  • Jeffrey T. FreymuellerEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-10475-7_77-1

Synonyms

Definition

Earthquake cycle

A conceptual model that explains the buildup of stress that causes earthquakes, through a period of steady tectonic loading that culminates in sudden slip in an earthquake.

Slip deficit

The difference between the slip that has occurred over a period of time on a fault and the amount expected from the long-term fault slip rate; a measure of the accumulated slip “available” for an earthquake on the fault.

Displacement

The change in position of a point on the Earth’s surface.

Coseismic displacement

The final, static displacement of the surface caused by slip in an earthquake.

Postseismic displacement

Displacements caused by postseismic processes, which are transient deformation processes that follow large earthquakes.

Creep

Steady gradual fault slip that is aseismic (does not result in an earthquake).

Volcanic inflation

Dilatational deformation caused by pressurization of a volcanic system.

Glacial isostatic adjustment (GIA)

The...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Albright JA, Gregg PM, Lu Z, Freymueller JT (2019) Hindcasting magma reservoir stability preceding the 2008 eruption of Okmok, Alaska. Geophys Res Lett 46.  https://doi.org/10.1029/2019GL083395
  2. Aloisi M, Bonaccorso A, Cannavò F, Currenti GM (2018) Coupled short- and medium-term geophysical signals at Etna volcano: using deformation and strain to infer magmatic processes from 2009 to 2017. Front Earth Sci.  https://doi.org/10.3389/feart.2018.00109
  3. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131.  https://doi.org/10.1002/2016JB013098CrossRefGoogle Scholar
  4. Altamimi Z, Métivier L, Rebischung P, Rouby H, Collilieux X (2017) ITRF2014 plate motion model. Geophys J Int 209:1906–1912.  https://doi.org/10.1093/gji/ggx136CrossRefGoogle Scholar
  5. Amey RMJ, Hooper A, Walters RJ (2018) A Bayesian method for incorporating self-similarity into earthquake slip inversions. J Geophys Res Solid Earth 123:6052–6071.  https://doi.org/10.1029/2017JB015316CrossRefGoogle Scholar
  6. Anderson KR, Poland MP (2016) Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea volcano, 2000–2012. Earth Planet Sci Lett 447:161–171.  https://doi.org/10.1016/j.epsl.2016.04.029CrossRefGoogle Scholar
  7. Anderson K, Segall P (2011) Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J Geophys Res 116(B7):20.  https://doi.org/10.1029/2010JB007939CrossRefGoogle Scholar
  8. Argus DF, Heflin MB (1995) Plate motion and crustal deformation estimated with geodetic data from the global positioning system. Geophys Res Lett 22:1973–1976CrossRefGoogle Scholar
  9. Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ, Willis P, Peltier WR, Owen SE (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys J Int 181:1–48.  https://doi.org/10.1111/j.1365-246X.2009.04463.xCrossRefGoogle Scholar
  10. Auriac A, Spaans KH, Sigmundsson F, Hooper A, Schmidt P, Lund B (2013) Iceland rising: solid Earth response to ice retreat inferred from satellite radar interferometry and viscoelastic modeling. J Geophys Res Solid Earth 118:1331–1344.  https://doi.org/10.1002/jgrb.50082CrossRefGoogle Scholar
  11. Bagnardi M, Hooper A (2018) Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem Geophys Geosyst 19:2194–2211.  https://doi.org/10.1029/2018GC007585CrossRefGoogle Scholar
  12. Banerjee P, Pollitz FF, Bürgmann R (2005) The size and duration of the Sumatra-Andaman earthquake from far-field static offsets. Science 308:1769–1772CrossRefGoogle Scholar
  13. Barbot S, Fialko Y, Bock Y (2009) Postseismic deformation due to the mw 6.0 2004 Parkfield earthquake: stress-driven creep on a fault with spatially variable rate-and-state friction parameters. J Geophys Res 114:B07405.  https://doi.org/10.1029/2008JB005748CrossRefGoogle Scholar
  14. Barletta VR, Bevis M, Smith BE, Wilson T, Brown A, Bordoni A, Willis M, Khan SA, Rovira-Navarro M, Dalziel I, Smalley R Jr, Kendrick E, Konfal S, Caccamise DJ II, Aster RC, Nyblade A, Wiens DA (2018) Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science 360:1335–1339.  https://doi.org/10.1126/science.aao1447CrossRefGoogle Scholar
  15. Barnhart WD, Lohman RB (2010) Automated fault model discretization for inversions for coseismic slip distributions. J Geophys Res 115:B10419.  https://doi.org/10.1029/2010JB007545CrossRefGoogle Scholar
  16. Bartlow NM, Wallace LM, Beavan RJ, Bannister S, Segall P (2014) Time-dependent modeling of slow slip events and associated seismicity and tremor at the Hikurangi subduction zone, New Zealand. J Geophys Res Solid Earth 119:734–753.  https://doi.org/10.1002/2013JB010609CrossRefGoogle Scholar
  17. Bevis M, Harig C, Khan SA, Brown A, Simons FJ, Willis M, Fettweis X, van den Broeke MR, Madsen FB, Kendrick E, Caccamise DJ II, van Dam T, Knudsen P, Nylen T (2019) Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. PNAS 116(6):1934–1939.  https://doi.org/10.1073/pnas.1806562116CrossRefGoogle Scholar
  18. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027.  https://doi.org/10.1029/2001GC000252CrossRefGoogle Scholar
  19. Blewitt G, Heflin M, Hurst K, Jefferson D, Webb F, Zumberge J (1993) Absolute far-field displacements from the 28 June 1992 landers earthquake sequence. Nature 361:340–342CrossRefGoogle Scholar
  20. Bock Y, Agnew DC, Fang P, Genrich JF, Hager BH, Herring TA, Hudnut KW, King RW, Larsen S, Minister JB, Stark K, Wdowinski S, Wyatt FK (1993) Detection of crustal deformation from the landers earthquake using continuous geodetic measurements. Nature 361:337–340CrossRefGoogle Scholar
  21. Bonafede M, Strehlau J, Ritsema AR (1992) Geophysical and structural aspects of fault mechanics – a brief historical overview. Terra Nova 4:458–463CrossRefGoogle Scholar
  22. Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci 36:531–567.  https://doi.org/10.1146/annurev.earth.36.031207.124326CrossRefGoogle Scholar
  23. Bürgmann R, Segall P, Lisowski M, Svarc JL (1997) Postseismic strain following the 1989 Loma Prieta earthquake from GPS and leveling measurements. J Geophys Res 102:4933–4955CrossRefGoogle Scholar
  24. Calais E, Han JY, DeMets C, Nocquet JM (2006) Deformation of the North American plate interior from a decade of continuous GPS measurements. J Geophys Res 111:B06402.  https://doi.org/10.1029/2005JB004253CrossRefGoogle Scholar
  25. Cervelli P, Fournier T, Freymueller JT, Power J (2006) Ground deformation associated with the precursory unrest and early phases of the January 2006 Eruption of Augustine Volcano, Alaska. Geophys Res Lett 33:L18304.  https://doi.org/10.1029/2006GL027219CrossRefGoogle Scholar
  26. Cervelli P, Fournier TJ, Freymueller JT, Power JA, Lisowski M, Pauk BA (2010) Geodetic constraints on magma movement and withdrawal during the 2006 Eruption of Augustine Volcano. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 Eruption of Augustine Volcano, Alaska, U.S. Geological Survey professional paper, vol 1769. U.S. Geological Survey, RestonGoogle Scholar
  27. Chen Q, Freymueller J, Wang Q, Yang Z, Xu C, Liu J (2004) A deforming block model for the present-day tectonics of Tibet. J Geophys Res 109(B1):B01403.  https://doi.org/10.1029/2002JB002151CrossRefGoogle Scholar
  28. Chlieh M, Avouac JP, Sieh K, Natawidjaja DH, Galetzka J (2008) Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J Geophys Res 113:B05305.  https://doi.org/10.1029/2007JB004981CrossRefGoogle Scholar
  29. Chlieh M, Mothes PA, Nocqueat J-M, Jarrin P, Charvis P, Cisneros D, Font Y, Collot J-Y, Villegas-Lanza J-C, Rolandone F, Vallée M, Regnier M, Segovia M, Martin X, Yepes H (2014) Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth Planet Sci Lett 400(2014):292–301.  https://doi.org/10.1016/j.epsl.2014.05.027CrossRefGoogle Scholar
  30. Chuang R, Johnson K (2011) Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: consideration of nonsteady mantle flow and lower crustal fault creep. Geology 39(7):627–630.  https://doi.org/10.1130/G32120.1CrossRefGoogle Scholar
  31. Clark JA, Farrell WE, Peltier WR (1978) Global changes in postglacial sea level: A numerical calculation. Quat Res 9(3):265–287.  https://doi.org/10.1016/0033-5894(78)90033-9
  32. Cross RS, Freymueller JT (2008) Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and western Alaska. J Geophys Res 113:B07405.  https://doi.org/10.1029/2007JB005136CrossRefGoogle Scholar
  33. Crowell BW, Bock Y, Melgar D (2012) Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys Res Lett 39:L09305CrossRefGoogle Scholar
  34. Crowell BW, Melgar D, Bock Y, Haase JS, Geng J (2013) Earthquake magnitude scaling using seismogeodetic data. Geophys Res Lett 40:6089–6094CrossRefGoogle Scholar
  35. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194CrossRefGoogle Scholar
  36. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80.  https://doi.org/10.1111/j.1365-246X.2009.04491.xCrossRefGoogle Scholar
  37. DeVries PMR, Krastev PG, Dolan JF, Meade BJ (2016) Viscoelastic block models of the North Anatolian fault: a unified earthquake cycle representation of pre- and postseismic geodetic observations. Bull Seismol Soc Am 107:403–417CrossRefGoogle Scholar
  38. Ding K, Freymueller JT, He P, Wang Q, Xu C (2019) Glacial isostatic adjustment, intraplate strain, and relative sea level changes in the eastern United States. J Geophys Res Solid Earth 124:6056–6071.  https://doi.org/10.1029/2018JB017060CrossRefGoogle Scholar
  39. Dolan JF, Bowman DD, Sammis CG (2007) Long range and long-term fault interactions in Southern California. Geology 35:855–858.  https://doi.org/10.1130/G23789A.1CrossRefGoogle Scholar
  40. Dragert H, Wang K, James TS (2001) A silent slip even on the deeper Cascadia subduction interface. Science 292:1525–1528.  https://doi.org/10.1126/science.1060152CrossRefGoogle Scholar
  41. Dvorak JJ, Dzurisin D (1993) Variations in magma supply rate at Kilauea volcano, Hawaii. J Geophys Res 98:22255–22268CrossRefGoogle Scholar
  42. Dvorak JJ, Dzurisin D (1997) Volcano geodesy: the search for magma reservoirs and the formation of eruptive vents. Rev Geophys 35:343–384CrossRefGoogle Scholar
  43. Dvorak JJ, Mastrolorenzo G (1991) The mechanisms of recent vertical crustal movements in Campi Flegrei caldera, southern Italy, Geological Society of America special paper. Geological Society of America, Boulder, p 263Google Scholar
  44. Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. INSTAAR occasional paper 58. Institute of Arctic and Alpine Research, University of Colorado, BoulderGoogle Scholar
  45. Elliott JL, Larsen CF, Freymueller JT, Motyka RJ (2010) Tectonic block motion and glacial isostatic adjustment in Southeast Alaska and adjacent Canada constrained by GPS measurements. J Geophys Res 115:B09407.  https://doi.org/10.1029/2009JB007139CrossRefGoogle Scholar
  46. Elliott J, Freymueller JT, Larsen CF (2013) Active tectonics of the St. Elias orogen, Alaska, observed with GPS measurements. J Geophys Res Solid Earth 118:5625–5642.  https://doi.org/10.1002/jgrb.50341CrossRefGoogle Scholar
  47. Fang R, Shi C, Song W, Wang G, Liu J (2014) Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning. Geophys J Int 196:461–472.  https://doi.org/10.1093/gji/ggt378CrossRefGoogle Scholar
  48. Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys 10:761–797CrossRefGoogle Scholar
  49. Fournier T, Freymueller JT, Cervelli P (2009) Tracking magma volume recovery at Okmok volcano using GPS and an unscented Kalman filter. J Geophys Res 114:B02405.  https://doi.org/10.1029/2008JB005837CrossRefGoogle Scholar
  50. Frank WB, Rousset B, Lasserre C, Campillo M (2018) Revealing the cluster of slow transients behind a large slow slip event. Sci Adv 4:eaat0661CrossRefGoogle Scholar
  51. Freed AM, Bürgmann R, Calais E, Freymueller J, Hreinsdóttir S (2006a) Implications of deformation following the 2002 Denali, Alaska earthquake for postseismic relaxation processes and lithospheric rheology. J Geophys Res 111:B01401.  https://doi.org/10.1029/2005JB003894CrossRefGoogle Scholar
  52. Freed A, Burgmann R, Calais E, Freymueller J (2006b) Stress-dependent power-law flow in the upper mantle following the 2002 Denali, Alaska, earthquake. Earth Planet Sci Lett 252:481–489CrossRefGoogle Scholar
  53. Freymueller JT, King NE, Segall P (1994) The co-seismic slip distribution of the landers earthquake. Bull Seismol Soc Am 84:646–659Google Scholar
  54. Freymueller JT, Woodard H, Cohen S, Cross R, Elliott J, Larsen C, Hreinsdóttir S, Zweck C (2008) Active deformation processes in Alaska, based on 15 years of GPS measurements. In: Freymueller JT, Haeussler PJ, Wesson R, Ekstrom G (eds) Active tectonics and seismic potential of Alaska, AGU geophysical monograph, vol 179. AGU, Washington, DC, pp 1–42CrossRefGoogle Scholar
  55. Freymueller, J. T., A. M. Freed, K. M. Johnson, R. Bürgmann, E. Calais, F. F. Pollitz, and J. Biggs, 2009. Denali fault earthquake Postseismic deformation models. Eos transactions of the AGU, 90, fall meet. Supplement, abstract G34A-05Google Scholar
  56. Fukuda J, Johnson KM (2008) A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing. Bull Seismol Soc Am 98(3):1128–1146.  https://doi.org/10.1785/0120070194CrossRefGoogle Scholar
  57. Fukuda J, Johnson KM (2010) Mixed linear–non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters. Geophys J Int 181:1441–1458.  https://doi.org/10.1111/j.1365-246X.2010.04564.xCrossRefGoogle Scholar
  58. Gan W, Zhang P, Shen Z-K, Niu Z, Wang M, Wan Y, Zhou D, Cheng J (2007) Present-day crustal motion within the Tibetan plateau inferred from GPS measurements. J Geophys Res 112:B08416.  https://doi.org/10.1029/2005JB004120CrossRefGoogle Scholar
  59. Gilbert GK (1884) A theory of the earthquakes of the Great Basin with a practical application. Am J Sci 27:49–53. Reprinted from the Salt lake Tribune of 20 Sept. 1883CrossRefGoogle Scholar
  60. Gladwin MT, Gwyther RL, Hart RHG, Breckenridge KS (1994) Measurements of the strain field associated with episodic creep events on the San Andreas fault at San Juan Bautista, California. J Geophys Res 99(B3):4559–4565.  https://doi.org/10.1029/93JB02877CrossRefGoogle Scholar
  61. Graham SE, Loveless JP, Meade BJ (2018) Global plate motions and earthquake cycle effects. Geochem Geophys Geosyst 19:2032–2048.  https://doi.org/10.1029/2017GC007391CrossRefGoogle Scholar
  62. Grapenthin R, Freymueller JT, Kaufman AM (2013) Geodetic observations during the 2009 eruption of redoubt volcano, Alaska. J Volcanol Geotherm Res 259:115–132, electronic access at.  https://doi.org/10.1016/j.jvolgeores.2012.04.021CrossRefGoogle Scholar
  63. Grapenthin R, Johanson IA, Allen RM (2014) Operational real-time GPS-enhanced earth- quake early warning. J Geophys Res 119(10):7944–7965.  https://doi.org/10.1002/2014JB011400CrossRefGoogle Scholar
  64. Gutenberg B (1945) Amplitudes of surface waves and magnitudes of shallow earthquakes. Bull Seismol Soc Am 35:3–12Google Scholar
  65. Hearn EH, McClusky S, Ergintav S, Reilinger RE (2009) Izmit earthquake postseismic deformation and dynamics of the North Anatolian Fault Zone. J Geophys Res 114:B08405.  https://doi.org/10.1029/2008JB006026CrossRefGoogle Scholar
  66. Heki K, Miyazaki S, Tsuji H (1997) Silent fault slip following an interplate thrust earthquake at the Japan Trench. Nature 386:595–598CrossRefGoogle Scholar
  67. Hsu YJ, Simons M, Avouac J-P, Galetzka J, Sieh K, Chlieh M, Natawidjaja D, Prawirodirdjo L, Bock Y (2006) Frictional Afterslip following the 2005 Nias-Simeulue earthquake Sumatra. Science 312:1921–1926.  https://doi.org/10.1126/science.1126960CrossRefGoogle Scholar
  68. Hu Y, Freymueller JT (2019) Geodetic observations of time-variable glacial isostatic adjustment in Southeast Alaska and its implications for earth rheology. J Geophys Res. 2018JB017028.  https://doi.org/10.1029/2018JB017028
  69. Hu Y, Bürgmann R, Uchida N, Banerjee P, Freymueller JT (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake. J Geophys Res Solid Earth 121:385–411.  https://doi.org/10.1002/2015JB012508CrossRefGoogle Scholar
  70. Hudnut KW, Bock Y, Cline M, Fang P, Feng Y, Freymueller J, Ge X, Gross WK, Jackson D, Kim M, King NE, Langbein J, Larsen SC, Lisowski M, Shen Z-K, Svarc J, Zhang J (1994) Co-seismic displacements of the 1992 landers earthquake sequence. Bull Seismol Soc Am 84:625–645Google Scholar
  71. Ide S, Beroza GC, Shelly DR, Uchide T (2007) A scaling law for slow earthquakes. Nature 447:76–79.  https://doi.org/10.1038/nature05780CrossRefGoogle Scholar
  72. Ikari M (2019) Laboratory slow slip events in natural geological materials. Geophys J Int 218:354–387.  https://doi.org/10.1093/gji/ggz143CrossRefGoogle Scholar
  73. Ji KH, Herring TA (2013) A method for detecting transient signals in GPS position time-series: smoothing and principal component analysis. Geophys J Int 193(1):171–186.  https://doi.org/10.1093/gji/ggt003CrossRefGoogle Scholar
  74. Ji C, Larson KM, Tan Y, Hudnut KW, Choi K (2004) Slip history of the 2003 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data. Geophys Res Lett 31:L17608.  https://doi.org/10.1029/2004GL020448CrossRefGoogle Scholar
  75. Johansson JM et al (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J Geophys Res 107:2157.  https://doi.org/10.1029/2001JB000400CrossRefGoogle Scholar
  76. Johnson KM (2013) Slip rates and off-fault deformation in Southern California inferred from GPS data and models. J Geophys Res Solid Earth 118(10):5643–5664CrossRefGoogle Scholar
  77. Johnson KM, Hilley G, Bürgmann R (2007) Influence of lithosphere viscosity structure on estimates of fault slip rates in the Mojave region of the San Andreas fault system. J Geophys Res 112:B07408.  https://doi.org/10.1029/2006JB004842CrossRefGoogle Scholar
  78. Johnson K, Bürgmann R, Freymueller JT (2009) Coupled afterslip and viscoelastic flow following the 2002 Denali fault, Alaska earthquake. Geophys J Int 176:670–682.  https://doi.org/10.1111/j.1365-246X.2008.04029.xCrossRefGoogle Scholar
  79. Jousset P, Mori H, Okada H (2003) Elastic models for the magma intrusion associated with the 2000 eruption of Usu volcano, Hokkaido, Japan. J Volcanol Geotherm Res 125:81–106.  https://doi.org/10.1016/S0377-0273(03)00090-8CrossRefGoogle Scholar
  80. Kanda RVS, Simons M (2010) An elastic plate model for interseismic deformation in subduction zones. J Geophys Res 115:B03405CrossRefGoogle Scholar
  81. Kanda RVS, Simons M (2012) Practical implications of the geometrical sensitivity of elastic dislocation models for field geologic surveys. Tectonophysics 560–561:94–104CrossRefGoogle Scholar
  82. Khan SA, Wahr J, Leuliette E, van Dam T, Larson KM, Francis O (2008) Geodetic measurements of postglacial adjustments in Greenland. J Geophys Res 113:B02402.  https://doi.org/10.1029/2007JB004956CrossRefGoogle Scholar
  83. Khan SA, Wahr J, Bevis M, Velicogna I, Kendrick E (2010) Spread of ice mass loss into Northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37:L06501.  https://doi.org/10.1029/2010GL042460CrossRefGoogle Scholar
  84. Kogan MG, Vasilenko NF, Frolov DI, Freymueller JT, Steblov GM, Levin BW, Prytkov AS (2011) The mechanism of postseismic deformation triggered by the 2006–2007 great Kuril earthquakes. Geophys Res Lett 38:L06304.  https://doi.org/10.1029/2011GL046855CrossRefGoogle Scholar
  85. Kreemer C, Blewitt G, Maerten F (2006) Co- and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data. Geophys Res Lett 33:L07307.  https://doi.org/10.1029/2005GL025566CrossRefGoogle Scholar
  86. Kreemer C, Blewitt G, Klein EC (2014) A geodetic plate motion and global strain rate model. Geochem Geophys Geosyst 15:3849–3889.  https://doi.org/10.1002/2014GC005407CrossRefGoogle Scholar
  87. Kreemer C, Hammond WC, Blewitt G (2018) A robust estimation of the 3-D intraplate deformation of the North American plate from GPS. J Geophys Res Solid Earth 123:4388–4412.  https://doi.org/10.1029/2017JB015257CrossRefGoogle Scholar
  88. Larsen CF, Motyka RJ, Freymueller JT, Echelmeyer KA, Ivins ER (2005) Rapid viscoelastic uplift in southeast Alaska caused by post-little ice age glacial retreat. Earth Planet Sci Lett 237:548–560CrossRefGoogle Scholar
  89. Larsen CF, Motyka RJ, Arendt AA, Echelmeyer KA, Geissler PE (2007) Glacier changes in Southeast Alaska and Northwest British Columbia and contribution to sea level rise. J Geophys Res 112:F01007.  https://doi.org/10.1029/2006JF000586CrossRefGoogle Scholar
  90. Larsen CF, Burgess E, Arendt AA, O’Neel S, Johnson AJ, Kienholz C (2015) Surface melt dominates Alaska glacier mass balance. Geophys Res Lett 42:5902–5908.  https://doi.org/10.1002/2015GL064349CrossRefGoogle Scholar
  91. Larson K, Freymueller J, Philipsen S (1997) Global plate velocities from the global positioning system. J Geophys Res 102:9961–9981CrossRefGoogle Scholar
  92. Larson KM, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300:1421–1424CrossRefGoogle Scholar
  93. Lau HCP, Mitrovica JX, Austermann J, Crawford O, Al-Attar D, Latychev K (2016) Inferences of mantle viscosity based on ice age data sets: radial structure. J Geophys Res Solid Earth 121:6991–7012.  https://doi.org/10.1002/2016JB013043CrossRefGoogle Scholar
  94. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  95. Li S, Freymueller J, McCaffrey R (2016) Slow slip events and time-dependent variations in locking beneath lower cook inlet of the Alaska-Aleutian subduction zone. J Geophys Res Solid Earth 121.  https://doi.org/10.1002/2015JB012491
  96. Lidberg M, Johansson JM, Scherneck H-G, Davis JL (2007) An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. J Geod 81:213–230CrossRefGoogle Scholar
  97. Lienkaemper JJ, Galehouse JS, Simpson RW (1997) Creep response of the Hayward fault to stress changes caused by the Loma Prieta earthquake. Science 276:2014–2016.  https://doi.org/10.1126/science.276.5321.2014CrossRefGoogle Scholar
  98. Lisowski M, Dzurisin D, Denlinger RP, Iwatsubo EY (2008) Analysis of GPS-measured deformation associated with the 2004–2006 dome-building eruption of Mount St. Helens, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled; the renewed eruption of Mount St. Helens, 2004–2006, U.S. Geological Survey professional paper, vol 1750. U.S. Geological Survey, Reston, p 856. DVD-ROM [http://pubs.usgs.gov/pp/1750/]Google Scholar
  99. Loveless JP, Meade BJ (2010) Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J Geophys Res 115:B02410.  https://doi.org/10.1029/2008JB006248CrossRefGoogle Scholar
  100. Loveless JP, Meade BJ (2011) Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations TS AT. Earth Planet Sci Lett 303(1–2):11–24.  https://doi.org/10.1016/j.epsl.2010.12.014CrossRefGoogle Scholar
  101. Lu Z, Masterlark T, Dzurisin D (2005) Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: Magma supply dynamics and postemplacement lava flow deformation. J Geophys Res 110:B02403.  https://doi.org/10.1029/2004JB003148CrossRefGoogle Scholar
  102. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the landers earthquake mapped by radar interferometry. Nature 364:138–142CrossRefGoogle Scholar
  103. Mattia M, Rossi M, Guglielmino F, Aloisi M, Bock Y (2004) The shallow plumbing system of Stromboli Island as imaged from 1 Hz instantaneous GPS positions. Geophys Res Lett 31:L24610CrossRefGoogle Scholar
  104. Mavrommatis AP, Segall P, Uchida N, Johnson KM (2015) Long-term acceleration of aseismic slip preceding the Mw 9 Tohoku-oki earthquake: constraints from repeating earthquakes. Geophys Res Lett 42.  https://doi.org/10.1002/2015gl066069
  105. McCaffrey R (2002) Crustal block rotations and plate coupling. In: Stein S, Freymueller J (eds) Plate boundary zones, AGU geodynamics series, vol 30. American Geophysical Union, Washington, pp 101–122Google Scholar
  106. McCaffrey R (2008) The tectonic framework of the Sumatran subduction zone. Annu Rev Earth Planet Sci 37:345–366CrossRefGoogle Scholar
  107. McCaffrey R, Qamar AI, King RW, Wells R, Khazaradze G, Williams CA, Stevens CW, Vollick JJ, Zwick PC (2007) Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophys J Int 169:1315–1340.  https://doi.org/10.1111/j.1365-246X.2007.03371.xCrossRefGoogle Scholar
  108. McCaffrey R, Wallace LM, Beavan J (2008) Slow slip and frictional transition at low temperature at the Hikurangi subduction zone. Nat Geosci 1:316–320CrossRefGoogle Scholar
  109. McGill SF, Wells SG, Fortner SK, Kuzma HA, McGill JD (2009) Slip rate of the western Garlock fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California. Geol Soc Am Bull 121:536–554.  https://doi.org/10.1130/B26123.1CrossRefGoogle Scholar
  110. Meade BJ (2007) Present-day kinematics at the India-Asia collision zone. Geology 35:81–84.  https://doi.org/10.1130/G22924A.1CrossRefGoogle Scholar
  111. Meade BJ, Hager BH (2005a) Block models of crustal motion in southern California constrained by GPS measurements. J Geophys Res 110:B03403.  https://doi.org/10.1029/2004JB003209CrossRefGoogle Scholar
  112. Meade BJ, Hager BH (2005b) Spatial localization of moment deficits in southern California. J Geophys Res 110:B04402.  https://doi.org/10.1029/2004JB003331CrossRefGoogle Scholar
  113. Meade BJ, Loveless JP (2009) Predicting the geodetic signature of MW > 8 slow slip events. Geophys Res Lett 36:L01306.  https://doi.org/10.1029/2008GL036364CrossRefGoogle Scholar
  114. Meade BJ, Klinger Y, Hetland E (2013) Inference of multiple earthquake-cycle relaxation timescales from irregular geodetic sampling of interseismic deformation. Bull Seismol Soc Am 103:2824–2835.  https://doi.org/10.1785/0120130006CrossRefGoogle Scholar
  115. Melbourne TI, Webb FH, Stock JM, Reigber C (2002) Rapid postseismic transients in subduction zones from continuous GPS. J Geophys Res 107:2241.  https://doi.org/10.1029/2001JB000555CrossRefGoogle Scholar
  116. Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johansson JM, Vermeer M, Koivula H (2001) Space-Geodetic Constraints on Glacial Isostatic Adjustment in Fennoscandia. Science 291:2381–2385Google Scholar
  117. Milne GA, Mitrovica JX, Scherneck H-G, Davis JL, Johansson JM, Koivula H, Vermeer M (2004) Continuous GPS measurements of postglacial adjustment in Fennoscandia: 2. Modeling results. J Geophys Res 109:B02412.  https://doi.org/10.1029/2003JB002619CrossRefGoogle Scholar
  118. Minson SE, Simons M, Beck JL (2013) Bayesian inversion for finite fault earthquake source models I - theory and algorithm. Geophys J Int 194(3):1701–1726.  https://doi.org/10.1093/gji/ggt180
  119. Minson SE, Murray JR, Langbein JO, Gomberg JS (2014) Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data. J Geophys Res Solid Earth 119:3201–3231.  https://doi.org/10.1002/2013JB010622CrossRefGoogle Scholar
  120. Mitrovica JX, Tamisiea M, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of Global Sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  121. Mitrovica JX, Gomez N, Clark PU (2009) The sea-level fingerprint of West Antarctic collapse. Science 323:753.  https://doi.org/10.1126/science.1166510CrossRefGoogle Scholar
  122. Miyagi Y, Freymueller JT, Kimata F, Sato T, Mann D (2004) Surface deformation caused by shallow magmatic activity at Okmok volcano, Alaska, detected by GPS campaigns 2000–2002. Earth Planets Space 56:e29-e32CrossRefGoogle Scholar
  123. Miyazaki S, Larson KM, Choi K, Hikima K, Koketsu K, Bodin P, Haase J, Emore G, Yamagiwa A (2004a) Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data. Geophys Res Lett 31:L21603.  https://doi.org/10.1029/2004GL021457CrossRefGoogle Scholar
  124. Miyazaki S, Segall P, Fukuda J, Kato T (2004b) Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: implications for variations in fault zone frictional properties. Geophys Res Lett 31:L06623.  https://doi.org/10.1029/2003GL019410CrossRefGoogle Scholar
  125. Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthq Res Inst, Univ Tokyo 36:99–134Google Scholar
  126. Moreno M, Melnick D, Rosenau M, Bolte J, Klotz J, Echtler H, Baez J, Bataille K, Chen J, Bevis M, Hase H, Oncken O (2011) Heterogeneous plate locking in the South-Central Chile subduction zone: building up the next great earthquake. Earth Planet Sci Lett 305(3):413–424CrossRefGoogle Scholar
  127. Neal CA, Brantley SR, Antolik L, Babb J, Burgess M, Calles K, Cappos M, Chang JC, Conway S, Desmither L, Dotray P, Elias T, Fukunaga P, Fuke S, Johanson IA, Kamibayashi K, Kauahikaua J, Lee RL, Pekalib S, Miklius A, Million W, Moniz CJ, Nadeau PA, Okubo P, Parcheta C, Patrick MP, Shiro B, Swanson DA, Tollett W, Trusdell F, Younger EF, Zoeller MH, Montgomery-Brown EK, Anderson KR, Poland MP, Ball J, Bard J, Coombs M, Dietterich HR, Kern C, Thelen WA, Cervelli PF, Orr T, Houghton BF, Gansecki C, Hazlett R, Lundgren P, Diefenbach AK, Lerner AH, Waite G, Kelly P, Clor L, Werner C, Mulliken K, Fisher G (2018) The 2018 rift eruption and summit collapse of Kīlauea volcano. Science.  https://doi.org/10.1126/science.aav7046
  128. Neri M, Casu F, Acocella V, Solaro G, Pepe S, Berardino P, Sansosti E, Caltabiano T, Lundgren P, Lanari R (2009) Deformation and eruptions at Mt. Etna (Italy): a lesson from 15 years of observations. Geophys Res Lett 36:L02309.  https://doi.org/10.1029/2008GL036151CrossRefGoogle Scholar
  129. Nield GA, Barletta VR, Bordoni A, King MA, Whitehouse PL, Clarke PJ, Domack E, Scambos TA, Berthier E (2014) Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth Planet Sci Lett 397:32–41.  https://doi.org/10.1016/j.epsl.2014.04.019CrossRefGoogle Scholar
  130. Nikolaidis R, Bock Y, de Jonge P, Shearer P, Agnew D, Van Domselaar M (2001) Seismic wave observations with the global positioning system. J Geophys Res 106:21897–21916CrossRefGoogle Scholar
  131. Nocquet J-M, Villegas-Lanza JC, Chlieh M, Mothes PA, Rolandone F, Jarrin P, Cisneros D, Alvarado A, Audin L, Bondoux F, Martin X, Font Y, Régnier M, Vallée M, Tran T, Beauval C, Mendoza JMM, Martinez W, Tavera H, Yepes H (2014) Motion of continental slivers and creeping subduction in the northern Andes. Nat Geosci 7:287–291.  https://doi.org/10.1038/NGEO2099CrossRefGoogle Scholar
  132. Norabuena E, Leffler-Griffin L, Mao AL, Dixon T, Stein S, Sacks IS, Ocola L, Ellis M (1998) Space geodetic observations of Nazca-South America convergence across the central Andes. Science 279:358–362CrossRefGoogle Scholar
  133. Norabuena EO, Dixon TH, Stein S, Harrison CGA (1999) Decelerating Nazca-South America and Nazca-Pacific Plate motions. Geophys Res Lett 26:3405–3408CrossRefGoogle Scholar
  134. Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res 109:B11406.  https://doi.org/10.1029/2003JB002830CrossRefGoogle Scholar
  135. Ohta Y et al (2012) Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (Mw 9.0). J Geophys Res 117:B02311.  https://doi.org/10.1029/2011JB008750CrossRefGoogle Scholar
  136. Oskin M, Perg L, Shelef E, Strane M, Gurney E, Singer B, Zhang X (2008) Elevated shear zone loading rate during an earthquake cluster in eastern California. Geology 36:507–510.  https://doi.org/10.1130/G24814A.1CrossRefGoogle Scholar
  137. Patrick M, Orr T, Anderson K, Swanson D (2019) Eruptions in sync: improved constraints on Kīlauea Volcano’s hydraulic connection. Earth Planet Sci Lett 507:50–61.  https://doi.org/10.1016/j.epsl.2018.11.030
  138. Peltier WR, Andrews JT (1976) Glacial-Isostatic Adjustment—I. The Forward Problem Geophysical Journal International 46(3):605–646.  https://doi.org/10.1111/j.1365-246X.1976.tb01251.x
  139. Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth 120:450–487.  https://doi.org/10.1002/2014JB011176CrossRefGoogle Scholar
  140. Peltier WR, Argus DF, Drummond R (2018) Comment on “an assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J Geophys Res Solid Earth 123:2019–2018.  https://doi.org/10.1002/2016JB013844CrossRefGoogle Scholar
  141. Pritchard ME, Simons M, Rosen PA, Hensley S, Webb FH (2002) Co-seismic slip from the 1995 July 30 M (sub w) = 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophys J Int 150:362–376CrossRefGoogle Scholar
  142. Protti M, González V, Newman AV, Dixon TH, Schwartz SY, Marshall JS, Feng L, Walter JI, Malservisi R, Owen SE (2013) Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nat Geosci 7:117–121.  https://doi.org/10.1038/NGEO2038CrossRefGoogle Scholar
  143. Ragon T, Sladen A, Simons M (2018) Accounting for uncertain fault geometry in earthquake source inversions – I: theory and simplified application. Geophys J Int 214:1174–1190.  https://doi.org/10.1093/gji/ggy187CrossRefGoogle Scholar
  144. Reid HF (1910) Permanent displacements of the ground, in the California earthquake of April 18, 1906. In: Report of the state earthquake investigation commission. Carnegie Inst. Wash, Washington, D.C., pp 16–28Google Scholar
  145. Reid HF (1911) The elastic rebound theory of earthquakes. Bull Dep Geol Univ Calif Publ 6(19):413–444Google Scholar
  146. Reilinger R et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411.  https://doi.org/10.1029/2005JB004051CrossRefGoogle Scholar
  147. Richter A, Ivins E, Lange H, Mendoza L, Schröder L, Hormaechea JL, Casassa G, Marderwald E, Fritsche M, Perdomo R et al (2016) Crustal deformation across the Southern Patagonian Ice field observed by GNSS. Earth Planet Sci Lett 452:206–215CrossRefGoogle Scholar
  148. Riel B, Simons M, Agram P, Zhan Z (2014) Detecting transient signals in geodetic time series using sparse estimation techniques. J Geophys Res Solid Earth 119:5140–5160.  https://doi.org/10.1002/2014JB011077CrossRefGoogle Scholar
  149. Robbins JW, Smith DE, Ma C (1993) Global scale tectonic plate motions measured with CDP VLBI data. In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics: crustal dynamics, AGU geophysical monograph, vol 23. American Geophysical Union, Washington, pp 21–36CrossRefGoogle Scholar
  150. Rogers G, Dragert H (2003) Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300:1942–1943.  https://doi.org/10.1126/science.1084783CrossRefGoogle Scholar
  151. Roy K, Peltier WR (2017) Space-geodetic and water level gauge constraints on continental uplift and tilting over North America: regional convergence of the ICE-6G_C (VM5a/VM6) models. Geophys J Int 210:1115–1142CrossRefGoogle Scholar
  152. Ruhl C, Melgar D, Grapenthin R, Allen RM (2017) The value of real-time GNSS to earthquake early warning. Geophys Res Lett 44(16):8311–8319.  https://doi.org/10.1002/2017GL074502CrossRefGoogle Scholar
  153. Sasgen I, Martín-Español A, Horvath A, Klemann V, Petrie EJ, Wouters B, Horwath M, Pail R, Bamber JL, Clarke PJ, Konrad H, Wilson T, Drinkwater MR (2018) Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE project REGINA). Earth Syst Sci Data 10:493–523.  https://doi.org/10.5194/essd-10-493-2018CrossRefGoogle Scholar
  154. Savage J (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88:4984–4996CrossRefGoogle Scholar
  155. Savage JC, Burford RO (1970) Accumulation of tectonic strain in California. Bull Seismol Soc Am 60:1877–1896Google Scholar
  156. Savage JC, Langbein J (2008) Postearthquake relaxation after the 2004 M6 Parkfield, California, earthquake and rate-and-state friction. J Geophys Res 113:B10407.  https://doi.org/10.1029/2008JB005723CrossRefGoogle Scholar
  157. Savage J, Prescott W (1978) Asthenosphere readjustment and the earthquake cycle. J Geophys Res 83:3369–3376CrossRefGoogle Scholar
  158. Scholz C (1990) The mechanics of earthquakes and faulting. Cambridge University Press, CambridgeGoogle Scholar
  159. Schwartz SY, Rokosky JM (2007) Slow slip events and seismic tremor at circum-pacific subduction zones. Rev Geophys 45:RG3004.  https://doi.org/10.1029/2006RG000208CrossRefGoogle Scholar
  160. Sella GF, Stein S, Dixon TH, Craymer M, James TS, Mazzotti S, Dokka RK (2007) Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys Res Lett 34:L02306.  https://doi.org/10.1029/2006GL027081CrossRefGoogle Scholar
  161. Sieh K, Jones L, Hauksson E, Hudnut K, Eberhart-Phillips D, Heaton T, Hough S, Hutton K, Kanamori H, Lilje A, Lindvall S, McGill S, Mori J, Rubin C, Spotila JA, Stock J, Thio H, Treiman J, Wernicke B, Zachariasen J (1993) Near-field investigations of the landers earthquake sequence, April to July, 1992. Science 260:171–176CrossRefGoogle Scholar
  162. Smith SW, Wyss M (1968) Displacement on the San Andreas fault subsequent to the 1966 Parkfield earthquake. Bull Seismol Soc Am 58:1955–1973Google Scholar
  163. Steblov GM, Kogan MG, Levin BV, Vasilenko NF, Prytkov AS, Frolov DI (2008) Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by GPS. Geophys Res Lett 35:L22306.  https://doi.org/10.1029/2008GL035572CrossRefGoogle Scholar
  164. Suito H, Freymueller JT (2009) A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J Geophys Res 114:B11404.  https://doi.org/10.1029/2008JB005954CrossRefGoogle Scholar
  165. Sun T, Wang K, Iinuma T, Hino R, He J, Fujimoto H, Kido M, Osada Y, Miura S, Ohta Y, Hu Y (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake. Nature 514(7520):84–87.  https://doi.org/10.1038/nature13778CrossRefGoogle Scholar
  166. Taira T, Bürgmann R, Nadeau RM, Dreger DS (2014) Variability of fault slip behavior along the San Andreas fault in the San Juan Bautista region. J Geophys Res Solid Earth 119:8827–8844.  https://doi.org/10.1002/2014JB011427CrossRefGoogle Scholar
  167. Tamisiea ME, Mitrovica JX, Milne GA, Davis JL (2001) Global geoid and sea level changes due to present-day ice mass fluctuations. J Geophys Res 106:30849–30863CrossRefGoogle Scholar
  168. Tamisiea ME, Leuliette EW, Davis JL, Mitrovica JX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett 32:L20501.  https://doi.org/10.1029/2005GL023961CrossRefGoogle Scholar
  169. Taylor M, Yin A (2009) Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 5:199–214.  https://doi.org/10.1130/GES00217.1CrossRefGoogle Scholar
  170. Thatcher W (2003) GPS constraints on the kinematics of continental deformation. Int Geol Rev 45:191–212CrossRefGoogle Scholar
  171. Thatcher W (2009) How the continents deform: the evidence from tectonic geodesy. Annu Rev Earth Planet Sci 17:237–262.  https://doi.org/10.1146/annurev.earth.031208.100035CrossRefGoogle Scholar
  172. Tong X, Smith-Konter B, Sandwell DT (2014) Is there a discrepancy between geological and geodetic slip rates along the San Andreas fault system? J Geophys Res Solid Earth 119:2518–2538.  https://doi.org/10.1002/2013JB010765CrossRefGoogle Scholar
  173. Tregoning P, Burgette R, McClusky SC, Lejeune S, Watson CS, McQueen H (2013) A decade of horizontal deformation from great earthquakes. J Geophys Res Solid Earth 118:2371–2381.  https://doi.org/10.1002/jgrb.50154CrossRefGoogle Scholar
  174. Tsang LLH, Meltzner AJ, Hill EM, Freymueller JT, Sieh K (2015) A paleogeodetic record of variable interseismic rates and megathrust coupling at Simeulue Island, Sumatra. Geophys Res Lett 42:10,585–10,594.  https://doi.org/10.1002/2015GL066366CrossRefGoogle Scholar
  175. van der Wal W, Whitehouse PL, Schrama EJO (2015) Effect of GIA models with 3D mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet Sci Lett 414(0):134–143.  https://doi.org/10.1016/j.epsl.2015.01.001CrossRefGoogle Scholar
  176. Wallace LM, Beavan J (2010) Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J Geophys Res 115:B12402.  https://doi.org/10.1029/2010JB007717CrossRefGoogle Scholar
  177. Wallace LM, Beavan RJ, McCaffrey R, Darby DJ (2004) Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J Geophys Res Solid Earth 109(B12):B12406.  https://doi.org/10.1029/2004JB003241CrossRefGoogle Scholar
  178. Wallace LM, Beavan RJ, McCaffrey R, Berryman KR, Denys P (2007) Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophys J Int 168(1):332–352.  https://doi.org/10.1111/j.1365-246X.2006.03183.xCrossRefGoogle Scholar
  179. Wallace LM, Webb SC, Ito Y, Mochizuki K, Hino R, Henrys S, Schwartz SY, Sheehan AF (2016) Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science 352(6286):701–704.  https://doi.org/10.1126/science.aaf2349CrossRefGoogle Scholar
  180. Wallace LM, Kaneko Y, Hreinsdottir S, Hamling I, Peng Z, Bartlow N et al (2017) Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nat Geosci 10(10):765–770.  https://doi.org/10.1038/ngeo3021CrossRefGoogle Scholar
  181. Wallace LM, Hreinsdóttir S, Ellis S, Hamling I, D’Anastasio E, Denys P (2018) Triggered slow slip and afterslip on the southern Hikurangi subduction zone following the Kaikōura earthquake. Geophys Res Lett 45:4710–4718.  https://doi.org/10.1002/2018GL077385CrossRefGoogle Scholar
  182. Wang K (2007) Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. In: Dixon TH, Moore JC (eds) The Seismogenic zone of subduction thrust faults. Columbia University Press, New York, pp 540–575Google Scholar
  183. Wang K, Fialko Y (2018) Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake. J Geophys Res Solid Earth 123:761–779.  https://doi.org/10.1002/2017JB014620CrossRefGoogle Scholar
  184. Wang K, Hu Y, He J (2012) Deformation cycles of subduction earthquakes in a viscoelastic earth. Nature 484:327–332.  https://doi.org/10.1038/nature11032CrossRefGoogle Scholar
  185. Wang K, Sun T, Brown L, Hino R, Tomita F, Kido M, Iinuma T, Kodaira S, Fujiwara T (2018) Learning from crustal deformation associated with the M9 2011 Tohoku-oki earthquake. Geosphere 14:552–571.  https://doi.org/10.1130/GES01531.1CrossRefGoogle Scholar
  186. Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys 54:64–92.  https://doi.org/10.1002/2015RG000502CrossRefGoogle Scholar
  187. Wöppelmann G, Letetrel C, Santamaria A, Bouin M-N, Collilieux X, Altamimi Z, Williams SDP, Miguez BM (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607.  https://doi.org/10.1029/2009GL038720CrossRefGoogle Scholar
  188. Yohler R, Bartlow N, Wallace LM, Williams C (2019) Time-dependent behavior of a near-trench slow-slip event at the Hikurangi subduction zone. Geochem Geophys Geosyst 20:4292–4304.  https://doi.org/10.1029/2019GC008229CrossRefGoogle Scholar
  189. Zeng Y, Shen Z-K (2014) Fault network modeling of crustal deformation in California constrained using GPS and geologic observations. Tectonophysics 612–613:1–17.  https://doi.org/10.1016/j.tecto.2013.11.030CrossRefGoogle Scholar
  190. Zhao B, Bürgmann R, Wang D, Tan K, Du R, Zhang R (2017) Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw7.9 Gorkha, Nepal, earthquake. J Geophys Res Solid Earth 122:8376–8401.  https://doi.org/10.1002/2017JB014366CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesMichigan State UniversityEast LansingUSA