Encyclopedia of Solid Earth Geophysics

Living Edition
| Editors: Harsh K. Gupta

Seismology, Monitoring of CTBT

Scientific and Technical Advances in Seismology and Their Relevance to CTBT
  • Zhongliang WuEmail author
  • Paul G. Richards
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-10475-7_163-1


Monitoring of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) entails the detection, identification, and characterization of atmospheric, underwater, and specifically underground nuclear tests, and the discrimination of nuclear explosions from other artificial and/or natural events such as quarry blasts and earthquakes (CTBTO PrepComm. 2009a).


Matching the needs of the monitoring of CTBT deals with seismic, infrasound, and hydro-acoustic, as well as radionuclide monitoring systems. At present the CTBT verification system specified by the treaty has three major components: the International Monitoring System (IMS) with a global network of 297 certified facilities up to the time of writing/revision (CTBTO PrepComm. 2019a); the International Data Centre (IDC) for the processing of observational data; and an On-Site Inspection (OSI) regime that utilizes a series of high-resolution technologies and has many similarities to the emergency on-site observation of...

This is a preview of subscription content, log in to check access.


  1. Arora NS, Russell S, Sudderth E (2013) NET-VISA: network processing vertically integrated seismic analysis. Bull Seismol Soc Am 103:709–729CrossRefGoogle Scholar
  2. Bergen KJ, Johnson PA, de Hoop MV, Beroza GC (2019) Machine learning for data-driven discovery in solid Earth geoscience. Science 363:eaau0323.  https://doi.org/10.1126/science.aau0323CrossRefGoogle Scholar
  3. Bolt BA (1976) Nuclear explosions and earthquakes – the parted veil. W. H. Freeman and Co., San FranciscoGoogle Scholar
  4. Bormann P (ed) (2002) IASPEI new manual of seismological observatory practice. GFZ, PotsdamGoogle Scholar
  5. Bowers D, Selby ND (2009) Forensic seismology and the comprehensive nuclear-test-ban treaty. Annu Rev Earth Planet Sci 37:209–236CrossRefGoogle Scholar
  6. CTBTO PrepComm (2006) CTBT: synergies with science, 1996–2006 and beyond. https://www.ctbto.org/specials/ctbt-synergies-with-science1996-2006-and-beyond/
  7. CTBTO PrepComm (2009a) Verification regime. http://www.ctbto.org/verification-regime/
  8. CTBTO PrepComm (2009b) ISS 09 – international scientific studies. http://www.ctbto.org/specials/the-international-scientific-studies-project-iss/
  9. CTBTO PrepComm (2019a) International monitoring system status. https://www.ctbto.org/
  10. CTBTO PrepComm (2019b) Science and technology – the conference series. https://www.ctbto.org/the-organization/science-and-technology-the-conference-series/
  11. Douglas A (2002) Seismometer arrays – their use in earthquake and test ban seismology. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology. Academic Press, Amsterdam, pp 357–368CrossRefGoogle Scholar
  12. Grêt A, Snieder R (2005) Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophys Res Lett 32:L06304.  https://doi.org/10.1029/2004GL021143CrossRefGoogle Scholar
  13. Han LB, Wu ZL, Jiang CS, Liu J (2017) Properties of three seismic events in September 2017 in the northern Korean Peninsula from moment tensor inversion. Sci Bull 62:1569–1571CrossRefGoogle Scholar
  14. Hannon W (1985) Seismic verification of a comprehensive test ban. Science 227:251–257CrossRefGoogle Scholar
  15. Husebye ES, Mykkeltveit S (eds) (1981) Identification of seismic sources – earthquake or underground explosion. D. Reidel Publishing Co., DordrechtGoogle Scholar
  16. IASPEI (2009) Resolutions at the 2009 scientific assembly, Cape Town, South Africa. ftp://ftp.iaspei.org/pub/resolutions/resolutions_2009_cape_town.pdf
  17. IASPEI (2019) Commission on seismological observation and interpretation (CoSOI). http://www.iaspei.org/commissions/commission-on-seismological-observation-and-interpretation
  18. International Seismological Centre (2019) IASPEI Ground Truth (GT) reference events. http://www.isc.ac.uk/gtevents/
  19. International Society for Digital Earth (2019) http://www.digitalearth-isde.org/
  20. Jiang CS, Wu ZL, Li YT, Ma TF (2014) ‘Repeating events’ as estimator of location precision: the China National Seismograph Network. Pure Appl Geophys 171:413–423CrossRefGoogle Scholar
  21. Jousset P, Reinsch T, Ryberg T, Blanck H, Clarke A, Aghayev R, Hersir GP, Henninges J, Weber M, Krawczyk CM (2018) Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat Commun 9:2509CrossRefGoogle Scholar
  22. Marra G, Clivati C, Luckett R, Tampellini A, Kronjäger J, Wright L, Mura A, Levi F, Robinson S, Xuereb A, Baptie B (2018) Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science 361:486–490Google Scholar
  23. Richards PG (2002) Seismological methods of monitoring compliance with the comprehensive nuclear test ban treaty. In: WHK L, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology. Academic Press, Amsterdam, pp 369–382CrossRefGoogle Scholar
  24. Richards PG, Kim W-Y (2009) Monitoring for nuclear explosions. Sci Am 300(3):64–71CrossRefGoogle Scholar
  25. Richards PG, Zavales J (1990) Seismic discrimination of nuclear explosions. Annu Rev Earth Planet Sci 18:257–286CrossRefGoogle Scholar
  26. Richards PG, Waldhauser F, Schaff D, Kim W-Y (2006) The applicability of modern methods of earthquake location. Pure Appl Geophys 163:351–372CrossRefGoogle Scholar
  27. Schaff DP, Richards PG (2004) Repeating seismic events in China. Science 303:1176–1178CrossRefGoogle Scholar
  28. Schaff DP, Richards PG, Slinkard M, Heck S, Young C (2018) Lg-wave cross correlation and epicentral double-difference location in and near China. Bull Seismol Soc Am 108:1326–1345CrossRefGoogle Scholar
  29. Seismological Grand Challenges Writing Group (2008) Seismological grand challenges in understanding Earth’s dynamic systems, report of the long range science plan for seismology workshop, September 18–19, 2008. Incorporated Research Institutions for Seismology (IRIS), Washington, D. C. http://www.iris.edu/hq/lrsps/Google Scholar
  30. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High resolution surface wave tomography from ambient seismic noise. Science 307:1615–1617CrossRefGoogle Scholar
  31. Slinkard M, Heck S, Schaff DP, Bonal N, Daily D, Young C, Richards PG (2016) Detection of the Wenchuan aftershock sequence using waveform correlation with a composite regional network. Bull Seismol Soc Am 106:1371–1379CrossRefGoogle Scholar
  32. Sykes LR, Deng J, Lyubomirskiy P (1993) Accurate location of nuclear explosions at Azgir, Kazakhstan, from satellite images and seismic data: implications for monitoring decoupled explosions. Geophys Res Lett 20:1919–1922CrossRefGoogle Scholar
  33. Walter WR, Wen L (2018) Preface to the focus section on North Korea’s September 2017 nuclear test and its aftermath. Seismol Res Lett 89:2013–2016.  https://doi.org/10.1785/0220180281CrossRefGoogle Scholar
  34. Wen L, Long H (2010) High-precision location of North Korea’s 2009 nuclear test. Seismol Res Lett 81:26–29CrossRefGoogle Scholar
  35. Wu ZL, Chen YT (2000) Potential impact of ‘Digital Earth’ on seismological monitoring. Seism Res Lett 71:548–552CrossRefGoogle Scholar
  36. Xie X, Zhao L (2018) The seismic characterization of North Korea underground nuclear tests. Chin J Geophys (in Chinese) 61:889–904Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Earthquake ForecastingChina Earthquake AdministrationBeijingChina
  2. 2.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA