Advertisement

The History of Nerve Repair

  • Susan StandringEmail author
Living reference work entry

Latest version View entry history

Part of the Reference Series in Biomedical Engineering book series (RSBE)

Abstract

This brief review traces the history of peripheral nerve repair, from the nihilistic attitude of early Greek physicians, via the occasional Renaissance proponent of tension-free anastomosis of nerve stumps, and the centuries-long reluctance of most surgeons to intervene for fear of causing severe postoperative pain, to current clinical practice involving microsurgery. Although the need to treat nerve injuries sustained in battle has long been a major driver in the quest for effective treatment, the transition from empiricism to evidence-based practice has occurred relatively recently along this time line. Modern concepts of the structure of peripheral nerves and their cellular responses to traumatic injury evolved in the nineteenth century pari passu with the emergence of increasingly sophisticated microscopical and neurophysiological techniques. Defining the cellular and molecular events that occur after a nerve has been injured, whether by ischemia, crush, or transection, informs the current management of such injuries. Despite many decades of research, it is a sobering thought that functional outcomes after repair frequently remain unsatisfactory.

Notes

Acknowledgments

I am very grateful to Sarah Hannis for her patience in developing Figure 1 with me and James Phillips.

References

  1. Abdel-Halim RE (2001) Experimental medicine 1000 years ago. Urol Ann 3:55–61CrossRefGoogle Scholar
  2. Angius D, Wang H, Spinner RJ, Gutierrez-Cotto Y, Yaszemski MJ, Windebank AJ (2012) A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials 33:8034–8039CrossRefGoogle Scholar
  3. Arnemann J (1787) Versuche über die Regeneration an lebenden Tieren. I.Über die Regeneration der Nerven. Gottingen. Cited in Holmes 1951Google Scholar
  4. Arraez-Aybar LA, Bueno-Lopez JL, Raio N (2015) Toledo school of translators and their influence on anatomical terminology. Ann Anat 198:21–33CrossRefGoogle Scholar
  5. Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B, Rahman M, Turmaine M, Wicher GK, Mitter R, GreenSmith I, Behrens A, Raivich G, Mirsky R, Jessen KR (2012) C-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75:633–647CrossRefGoogle Scholar
  6. Artico M, Cervoni I, Nucci F, Giuffré R (1996) Birthday of peripheral nervous system surgery: the contribution of Gabriele Ferrara (1543–1627). Neurosurgery 39:380–382CrossRefGoogle Scholar
  7. Babcock WW (1927) A standard technique for operations on peripheral nerves. With especial reference to the closure of large gaps. Surg Gynec Obstet 45:364–378Google Scholar
  8. Bain JR, Mackinnon SE, Hudson AR, Wade J, Evans P, Makino A, Hunter D (1992) The peripheral nerve allograft in the primate immunosuppressed with Cyclosporin A: I. Histologic and electrophysiologic assessment. Plast Reconstr Surg 90:1036–1046CrossRefGoogle Scholar
  9. Ballance CA Stewart P (1901) The healing of nerves. Macmillan and Co, LondonGoogle Scholar
  10. Barker CF, Markmann JF (2013) Historical overview of transplantation. Cold Spring Harb Perspect Med 3:a014977CrossRefGoogle Scholar
  11. Bay NS, Bay BH (2010) Greek anatomist Herophilus: the father of anatomy. Anat Cell Biol 43:280–283CrossRefGoogle Scholar
  12. Belen D, Aciduman A, Er U (2009) History of peripheral nerve repair: may the procedure have been practiced in Hippocratic School? Surg Neurol 72:190–194CrossRefGoogle Scholar
  13. Birch R (2009) Causalgia: a restatement. Neurosurgery 65(4 Suppl):A222–A228CrossRefGoogle Scholar
  14. Birch R (2011) Surgical disorders of the peripheral nerves, 2nd edn. Springer, LondonCrossRefGoogle Scholar
  15. Birch R, Misra P, Stewart MP, Eardley WG, Ramasamy A, Brown K, Shenoy R, Anand P, Clasper J, Dunn R, Etherington J (2012) Nerve injuries sustained during warfare: part I–epidemiology. J Bone Joint Surg Br 94:523–528CrossRefGoogle Scholar
  16. Borelli GA (1681) De motu animalium. Angelo Bernabo, RomeGoogle Scholar
  17. Boullerne AI (2016) The history of myelin. Exp Neurol 283:431–445CrossRefGoogle Scholar
  18. Brenner MJ, Moradzadeh A, Myckatyn TM, Tung TH, Mendez AB, Hunter DA, Mackinnon SE (2008) Role of timing in assessment of nerve regeneration. Microsurgery 28:265–272CrossRefGoogle Scholar
  19. Brooks DN, Weber RV, Chao JD, Rinker BD, Zoldos J, Robichaux MR, Ruggeri SB, Anderson KA, Bonatz EE, Wisotsky SM, Cho MS, Wilson C, Cooper EO, Ingari JV, Safa B, Parrett BM, Buncke GM (2012) Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 32:1–14CrossRefGoogle Scholar
  20. Bruch C (1855) Über die regeneration durchschnittenen nerven. Zt wiss Zool 6:135–138Google Scholar
  21. Brushart TM (1988) Preferential reinnervation of motor nerves by regenerating motor axons. J Neurosci 8:1026–1031CrossRefGoogle Scholar
  22. Brushart TM (1993) Motor axons preferentially reinnervate motor pathways. J Neurosci 13:2730–2738CrossRefGoogle Scholar
  23. Cajal SRY (1954) Neuron theory or reticular theory (trans: Purkiss MU, Fox CA). Consejo Superior De Investigaciones Cientificas, MadridGoogle Scholar
  24. Cajal SRY (1991) Degeneration and regeneration in the nervous system (trans: May R). Oxford University Press, OxfordGoogle Scholar
  25. Chalcidius (1876) Platonis Timaeus Interprete Chalcidio cum Ejusdem Commentario. B.G. Teubner, Lipsiae (Leipzig). [Cited in Celesia GG (2012) Alcmaeon of Croton’s observations on health, brain, mind, and soul. J Hist Neurosci 21:409–426]Google Scholar
  26. Chen P, Piao X, Bonaldo P (2015) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 130:605–618CrossRefGoogle Scholar
  27. Christie KJ, Zochodne D (2013) Peripheral axon regrowth: new molecular approaches. Neuroscience 240:310–324CrossRefGoogle Scholar
  28. Ciaramitaro P, Mondelli M, Logullo F, Grimaldi S, Battiston B, Sard A, Scarinzi C, Migliaretti G, Faccani G, Cocito D, Italian Network for Traumatic Neuropathies (2010) Traumatic peripheral nerve injuries: epidemiological findings, neuropathic pain and quality of life in 158 patients. J Peripher Nerv Syst 15:120–127CrossRefGoogle Scholar
  29. Cruikshank WC (1795) Experiments on the nerves, particularly on their reproduction, and on the spinal marrow of living animals. Phil Trans R Soc 85, 512–519. (This paper dated 1795 records the experiment undertaken in 1776)Google Scholar
  30. Cruikshank W, Hunter J (1795) Experiments on the nerves, particularly on their reproduction and on the spinal marrow of living animals. Philos Trans R Soc Lond 85:177–189CrossRefGoogle Scholar
  31. Dandy WE (1943) A method of restoring nerves requiring resection. JAMA 122:35–36CrossRefGoogle Scholar
  32. de Medinaceli L, Seaber AV (1989) Experimental nerve reconnection: importance of initial repair. Microsurgery 10:56–70CrossRefGoogle Scholar
  33. Decker L, Desmarquet-Trin-Dinh C, Taillebourg E, Ghislain J, Vallat JM, Charnay P (2006) Peripheral myelin maintenance is a dynamic process requiring constant Krox20 expression. J Neurosci 26:9771–9779CrossRefGoogle Scholar
  34. Dellon AL (1992) Management of peripheral nerve injuries. Basic principles of microneurosurgical repair. Oral Maxillofac Surg Clin N Am 4:393–403Google Scholar
  35. Dobson JF (1927) Erasistratus. Proc R Soc Med 20:825–832Google Scholar
  36. Driscoll PJ, Glasby MA, Lawson GM (2002) An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. J Orthop Res 20:370–375CrossRefGoogle Scholar
  37. Dubový P, Jančálek R, Kubek T (2013) Role of inflammation and cytokines in peripheral nerve regeneration. Int Rev Neurobiol 108:173–206CrossRefGoogle Scholar
  38. Dvali L, Mackinnon S (2007) The role of microsurgery in nerve repair and nerve grafting. Hand Clin 23:73–81CrossRefGoogle Scholar
  39. Ellis H (2009) The Cambridge illustrated history of surgery. Cambridge University Press, CambridgeGoogle Scholar
  40. Evans PJ, Midha R, Mackinnon SE (1994) The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol 43:187–233CrossRefGoogle Scholar
  41. Fish JS, Bain JR, McKee N, Mackinnon SE (1992) The peripheral nerve allograft in the primate immunosuppressed with Cyclosporin A: II. Functional evaluation of reinnervated muscle. Plast Reconstr Surg 90:1047–1052CrossRefGoogle Scholar
  42. Ford BJ (1981) Enlightening neuroscience: microscopes and microscopy in the eighteenth century. In: Whitaker H, Smith CU, Finger S (eds) Brain, mind and medicine: essays in eighteenth-century neuroscience. Springer, Berlin, pp 29–41Google Scholar
  43. Ford BJ (1982) Antony van Leeuwenhoek’s sections of bovine optic nerve. Microscope 30:171–184Google Scholar
  44. Foster M (1901) Lectures on the history of physiology during the 16th, 17th and 18th Centuries. Cambridge University Press, CambridgeGoogle Scholar
  45. Friedman AH (2009) An eclectic review of the history of peripheral nerve surgery. Neurosurgery 65(4 Suppl):A3–A8CrossRefGoogle Scholar
  46. Fullarton AC, Glasby MA, Lawson GM (1998) Immediate and delayed nerve repair using freeze-thawed muscle allografts associated long-bone fracture. J Hand Surg Br 23:360–364CrossRefGoogle Scholar
  47. Galvani L (1780) De viribus electricitatis in motu musculari commentaries. Accademia dell Scienze, BolognaGoogle Scholar
  48. Gebhart GF, Bielefeldt K (2016) Physiology of visceral pain. Compr Physiol 6:1609–1633CrossRefGoogle Scholar
  49. Glasby MA, Fullerton AC, Lawson GM (1998) Immediate and delayed nerve repair using freeze-thawed muscle autografts in complex nerve injuries associated arterial injury. J Hand Surg Br 23:354–359CrossRefGoogle Scholar
  50. Glenn TD, Talbot WS (2013) Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol 23:1041–1048CrossRefGoogle Scholar
  51. Glickstein M (2006) Golgi and Cajal: the neuron doctrine and the 100th anniversary of the 1906 Nobel Prize. Curr Biol 16:R147–R151CrossRefGoogle Scholar
  52. Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, Hantke J et al (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210(1):153–168CrossRefGoogle Scholar
  53. Goodrich JT, Kliot M (2015) History of the peripheral and cranial nerves. In: Tubbs RS et al (eds) Nerves and nerve injuries, vol 1. Elsevier, pp 3–22Google Scholar
  54. Gordon T (2014) Neurotrophic factor expression in denervated motor and sensory Schwann cells: relevance to specificity of peripheral nerve regeneration. Exp Neurol 254:99–108CrossRefGoogle Scholar
  55. Graham JB, Neubauer D, Xue QS, Muir D (2007) Chondroitinase applied to peripheral nerve repair averts retrograde axonal regeneration. Exp Neurol 203:185–195CrossRefGoogle Scholar
  56. Green CD (2003) Where did the ventricular localization of mental faculties come from? J Hist Behav Sci 39:131–142CrossRefGoogle Scholar
  57. Grinsell D, Keating CP (2014) Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int 2014:698256CrossRefGoogle Scholar
  58. Guillery RW (2007) Relating the neuron doctrine to the cell theory. Should contemporary knowledge change our view of the neuron doctrine? Brain Res Rev 55:411–421CrossRefGoogle Scholar
  59. Günther AF, Schôn JMA (1840) Versuche und Bemerkungen über Regeneration der Nerven und Abh Versuche und Bemerkungen über Regeneration der Nerven und Abhängigkeit der peripherischen Nerven von den Central-organen.ngigkeit der peripherischen Nerven von den Central-organen. Müller’s Archiv 270–286Google Scholar
  60. Guthrie GJ (1827) A treatise on gunshot wounds, inflammation, erysipelas, and mortification, on injuries of the nerves, and on wounds of the extremities, requiring the different operation of amputation, 3rd edn. Burgess and Hill, LondonGoogle Scholar
  61. Haighton J (1795) An experimental inquiry concerning the reproduction of nerves. Philos Trans R Soc Lond 85:519–525Google Scholar
  62. Hall SM (1986a) Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol Appl Neurobiol 12:27–46MathSciNetCrossRefGoogle Scholar
  63. Hall SM (1986b) The effect of inhibiting Schwann cell mitosis on the re-innervation of acellular autografts in the peripheral nervous system of the mouse. Neuropathol Appl Neurobiol 12:401–414MathSciNetCrossRefGoogle Scholar
  64. Hall SM (1999) The biology of chronically denervated Schwann cells. Ann N Y Acad Sci 883:215–233CrossRefGoogle Scholar
  65. Hall S (2009) Biomaterials for the repair of peripheral nerves. In: Di Sivio L (ed) Cellular response to biomaterials. Woodhead Publishing, Cambridge, pp 252–290CrossRefGoogle Scholar
  66. Hanigan W (2010) The development of military medical care for peripheral nerve injuries during World War I. Neurosurg Focus 28(5):E24.  https://doi.org/10.3171/2010.3.FOCUS103CrossRefGoogle Scholar
  67. Harvey W (1628) Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus. FrankfurtGoogle Scholar
  68. Henry FP, Goyal NA, David WS, Wes D, Bujold KE, Randolph MA, Winograd JM, Kochevar IE, Redmond RW (2009) Improving electrophysiologic and histologic outcomes by photochemically sealing amnion to the peripheral nerve repair site. Surgery 145:313–321CrossRefGoogle Scholar
  69. Hernigou P (2013) Ambroise Paré II: Paré's contributions to amputation and ligature. Int Orthop 37:769–772CrossRefGoogle Scholar
  70. Highet WB, Holmes W (1943) Traction injuries to the lateral popliteal nerve and traction injuries to peripheral nerves after suture. Br J Surg 30:212–233CrossRefGoogle Scholar
  71. Highet WB, Sanders K (1943) The effects of stretching nerves after suture. Br J Surg 30:355–369CrossRefGoogle Scholar
  72. Hirata K, Kawabuchi M (2002) Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration. Microsc Res Tech 57:541–547CrossRefGoogle Scholar
  73. Hiscoe HB (1947) The distribution of nodes and incisures in normal and regenerated nerve fibres. Anat Rec 99:447–475CrossRefGoogle Scholar
  74. Höke A, Sun HS, Gordon T, Zochodne DW (2001) Do denervated peripheral nerve trunks become ischemic? The impact of chronic denervation on vasa nervorum. Exp Neurol 172:398–406CrossRefGoogle Scholar
  75. Höke A, Redett R, Hameed H, Jari R, Zhou C, Li ZB, Griffin JW, Brushart TM (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:9646–9645CrossRefGoogle Scholar
  76. Holmes W (1951) The repair of nerves by suture. J Hist Med Allied Sci 6:44–63CrossRefGoogle Scholar
  77. Horn T (1946) The repair of peripheral nerve lesions. Am J Surg LXXII:489–493Google Scholar
  78. Howell WH, Huber GC (1892) A physiological, histological and clinical study of the degeneration and regeneration in peripheral nerve fibres after severance of their con nections with the nerve centres. Plates XII–XVII. J Physiol 13:335–406CrossRefGoogle Scholar
  79. Howell WH, Huber GC (1893) A physiological, histological and clinical study of the degeneration and regeneration in peripheral nerve fibres after severance of their connections with the nerve centres. Part III. Critical résumé of surgical cases of primary and secondary suture. J Physiol 14:1–51CrossRefGoogle Scholar
  80. Hunt T (1994) Anglo-Norman medicine I Roger Frugard’s Chirurgia and the Practcica brevis of Platearius. D S Brewer, CambridgeGoogle Scholar
  81. Ijpma FF, Van De Graaf RC, Meek MF (2008) The early history of tubulation in nerve repair. J Hand Surg Eur 33:581–586CrossRefGoogle Scholar
  82. Ikeda M, Oka Y (2012) The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration. Brain Behav 2:382–390CrossRefGoogle Scholar
  83. Ingebrigtsen R (1915) A contribution to the biology of peripheral nerves in transplantation. J Exp Med 22:418–426CrossRefGoogle Scholar
  84. Isaacs J, Browne T (2014) Overcoming short gaps in peripheral nerve repair: conduits and human acellular nerve allograft. Hand (N Y) 9:131–137CrossRefGoogle Scholar
  85. Jobe MT, Martinez SF (2012) Peripheral nerve injuries. In: Canale ST, Beaty JH (eds) Campbells’ operative orthopaedics e-book, part XVI, chapter 62, vol IV. Elsevier, Amsterdam, pp 3062–3126Google Scholar
  86. Jobe MT, Martinez SF (2013) Peripheral nerve injuries. In: Canale, Beaty (eds) Campbell’s operative orthopaedics, 12 edn. Elsevier, Philadelphia, pp 3063–3065. Ch 62DGoogle Scholar
  87. Jones EG (1999) Golgi, Cajal and the neuron doctrine. J Hist Neurosci 8:170–178CrossRefGoogle Scholar
  88. Ju MS, Lin CC, Fan JL, Chen RJ (2006) Transverse elasticity and blood perfusion of sciatic nerves under in situ circular compression. J Biomech 39:97–102CrossRefGoogle Scholar
  89. Kaplan HM, Prakhar M, Kohn J (2015) The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med 26:226CrossRefGoogle Scholar
  90. Kawamura DH, Johnson PJ, Moore AM, Magill CK, Hunter DA, Ray WZ, Tung TH, Koeppen AH (2004) Wallerian degeneration: history and clinical significance. J Neurol Sci 220:115–117CrossRefGoogle Scholar
  91. Kettle SJ, Starritt NE, Glasby MA, Hems TE (2013) End-to-side nerve repair in a large animal model: how does it compare with conventional methods of nerve repair. J Hand Surg Eur 38:192–202CrossRefGoogle Scholar
  92. Koeppen AH (2004) Wallerian degeneration: history and clinical significance. J Neurol Sci 220: 115–117CrossRefGoogle Scholar
  93. Kokkalis ZT, Pu C, Small GA, Weiser RW, Venouziou AI, Sotereanos DG (2011) Assessment of processed porcine extracellular matrix as a protective barrier in a rabbit nerve wrap model. J Reconstr Microsurg 27:19–28CrossRefGoogle Scholar
  94. Létiévant E (1873) Traité des Sections Nerveuses. Baillière, ParisGoogle Scholar
  95. Leuzzi S, Armenio A, Leone L, De Santis V, Di Turi A, Annoscia P, Bufano L, Pascone M (2014) Repair of peripheral nerve with vein wrapping. G Chir 35:101–106Google Scholar
  96. Li H, Terenghi G, Hall SM (1997) Effects of delayed re-innervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo. Glia 20:333–347CrossRefGoogle Scholar
  97. Little KM, Zomorodi AR, Selznick LA, Friedman AH (2004) An eclectic history of peripheral nerve surgery. Neurosurg Clin N Am 15:109–123CrossRefGoogle Scholar
  98. Lloyd BM, Luginbuhl RD, Brenner MJ, Rocque BG, Tung TH, Myckatyn TM, Hunter DA, Mackinnon SE, Borschel GH (2007) Use of motor nerve material in peripheral nerve repair with conduits. Microsurgery 27:138–145CrossRefGoogle Scholar
  99. Lundborg G (1988) Intraneural microcirculation. Orthop Clin North Am 19:1–12Google Scholar
  100. Lundborg G, Rosen B, Dahlin L, Holmberg J, Rosen I (2004) Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg Br 29:100–107CrossRefGoogle Scholar
  101. Mackinnon SE (2010) Matching of motor-sensory modality in the rodent femoral nerve model shows no enhanced effect on peripheral nerve regeneration. Exp Neurol 223:496–504CrossRefGoogle Scholar
  102. Mackinnon SE, Dellon AL (1988) Nerve repair and nerve grafts. In: Mackinnon SE (ed) Surgery of the peripheral nerve. Thieme, New YorkGoogle Scholar
  103. Mackinnon SE, Dellon AL, O’Brien JP (1991) Changes in nerve fiber numbers distal to a nerve repair in the rat sciatic nerve model. Muscle Nerve 14:1116–1122CrossRefGoogle Scholar
  104. Madison RD, Robinson GA, Chadaram SR (2007) The specificity of motor neurone regeneration (preferential reinnervation). Acta Physiol (Oxf) 189:201–206CrossRefGoogle Scholar
  105. Mayo-Robson AW (1917) Nerve grafting as a means of restoring function in limbs paralysed by gunshot or other injuries. Br Med J 1(2926):117–118CrossRefGoogle Scholar
  106. Mazzarello P (1999) A unifying concept: the history of cell theory. Nat Cell Biol 1:E13–E15CrossRefGoogle Scholar
  107. Millesi H (1986) The nerve gap. Theory and clinical practice. Hand Clin 2:651–663Google Scholar
  108. Moore AM, MacEwan M, Santosa KB, et al. (2011) Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve. 44:221–234CrossRefGoogle Scholar
  109. Moore AM, Novak CB (2014) Advances in nerve transfer surgery. J Hand Ther 27:96–104CrossRefGoogle Scholar
  110. Moosavi J (2009) The place of Avicenna in the history of medicine. Avicenna J Med Biotechnol 1:3–8Google Scholar
  111. Myckatyn TM, Mackinnon SE (2004) A review of research endeavors to optimize peripheral nerve reconstruction. Neurol Res. 26:124–138CrossRefGoogle Scholar
  112. Myers RR, Murakami H, Powell HC (1986) Reduced nerve blood flow in edematous neuropathies: a biomechanical mechanism. Microvasc Res 32:145–151CrossRefGoogle Scholar
  113. Nasse CF (1839) Über die Veränderungen der Nervenfasern nach ihrer Durchschneidung. Müller’s Archiv 405–419Google Scholar
  114. Neubauer D, Graham JB, Muir D (2010) Nerve grafts with various sensory and motor fiber compositions are equally effective for the repair of a mixed nerve defect. Exp Neurol 223:203–206CrossRefGoogle Scholar
  115. Nichols CM, Brenner MJ, Fox IK, Tung TH, Hunter DA, Rickman SR, Mackinnon SE (2004) Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol 190:347–355CrossRefGoogle Scholar
  116. Ochs S (1977) The early history of nerve regeneration beginning with Cruikshank’s observations in 1776. Med Hist. 21:261–274CrossRefGoogle Scholar
  117. Orf G (1981) What governs the size of the retraction gap in divided peripheral nerves. Neurosurg Rev 4:11–16CrossRefGoogle Scholar
  118. Panagopoulos GN, Megaloikonomos PD, Mavrogenis AF (2017) The present and future for peripheral nerve regeneration. Orthopedics 40:e141–e156CrossRefGoogle Scholar
  119. Paré A (1634) The works of that famous chirurgion Ambrose Parey translated out of Latine and compared with the French. T. Johnson. Tr, London [Cited in Holmes 1951]Google Scholar
  120. Parkinson DB, Bhaskaran A, Droggiti A, Dickinson S, D’Antonio M, Mirsky R, Jessen KR (2004) Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J Cell Biol 164:385–394CrossRefGoogle Scholar
  121. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, Jessen KR (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181:625–637CrossRefGoogle Scholar
  122. Pearce JMS (2008) The Development of Spinal Cord Anatomy Eur Neurol 59:286–291CrossRefGoogle Scholar
  123. Pellitteri R, Cova L, Zaccheo D, Silani V, Bossolasco P (2016) Phenotypic modulation and neuroprotective effects of olfactory ensheathing cells: a promising tool for cell therapy. Stem Cell Rev 12:224–234CrossRefGoogle Scholar
  124. Perroncito A (1905) Sulla questione della rigenerazione autogena della fibre nervosa. Boll. Soc. Med. Chir. Pavia 360–363Google Scholar
  125. Philipeaux J, Vulpian A (1859) Notre sur des expériences démontrant que les nerfs séparés des centres nerveux peuvent après être altérés complètement se régénérer tout en demeurant isolés de des centres et recouvrir leurs propriétés physiologiques. C R Hebd Acad Sci (Paris) 59:507–509Google Scholar
  126. Philipeaux, J.-M., Vulpian A (1860) Recherches expérimentales sur la régénération des nerfs séparés des centres nerveux. Comptes rendus des séances et mémoires de la Société de Biologie. C R séances et mémoires de la Société de Biologie, 1:1–77.Google Scholar
  127. Prévost P (1826) Note sur la régénération du tissu nerveux. Mém Soc Phys Genève, 3 (cited in Holmes W (1951) The repair of nerves by suture. J Hist Med Allied Sci 6:44–63)Google Scholar
  128. Provencher M T, Abdu W A (2000) Giovanni Alfonso Borelli: “Father of spinal biomechanics.” Spine. 25:131–136CrossRefGoogle Scholar
  129. Ranvier LA (1878) Leçons sur l’Histologie su Système Nerveux. Librairie F. Savy, ParisGoogle Scholar
  130. Rao M, Nelms BD, Dong L, Salinas-Rios V, Rutlin M, Gershon MD, Corfas G (2015) Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia.  https://doi.org/10.1002/glia.22876. [Epub ahead of print]CrossRefGoogle Scholar
  131. Remak R (1838) Observationes anatomicæ et microscopicæ de systematis nervosi structura. Berolini, ReimsGoogle Scholar
  132. Rinker B, Zoldos J, Weber RV, Ko J, Thayer W, Greenberg J, Leversedge FJ, Safa B, Buncke G (2017) Use of processed nerve allografts to repair nerve injuries greater than 25 mm in the hand. Ann Plast Surg 78(6S Suppl 5):S292–S295CrossRefGoogle Scholar
  133. Sadek AF, Fouly EH, Hamdy M (2014) Functional and electrophysiological outcome after autogenous vein wrapping of primary repaired ulnar nerves. Microsurgery 34:361–366CrossRefGoogle Scholar
  134. Saheb-Al-Zamani M, Yan Y, Farber SJ, Hunter DA, Newton P, Wood MD, Stewart SA, Johnson PJ, Mackinnon SE (2013) Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Exp Neurol 247:165–177CrossRefGoogle Scholar
  135. Salzer JL (2008) Switching myelination on and off. J Cell Biol 181:575–577CrossRefGoogle Scholar
  136. Schmidt G (1993) Eduard Albert and the beginning of human nerve grafting. Acta Chir Austriaca 25:287–288CrossRefGoogle Scholar
  137. Schuetze SM (1983) The discovery of the action potential. Trends Neurosci 6:164–168CrossRefGoogle Scholar
  138. Seddon HJ (1942) A classification of nerve injuries. Br Med J 2:237–239CrossRefGoogle Scholar
  139. Shoja MM, Tubbs RS (2007) The history of anatomy in Persia. J Anat 210:359–378CrossRefGoogle Scholar
  140. Simpson D (2009) From Lanfranc to Sunderland: the surgery of peripheral nerve injuries. ANZ J Surg 79:930–935CrossRefGoogle Scholar
  141. Smith JW (1964) Microsurgery of peripheral nerves. Plast Reconstr Surg 33:317–329CrossRefGoogle Scholar
  142. Souayah N, Greenstein JI (2005) Insights into neurologic localization by Rhazes, a medieval Islamic physician. Neurology 65:125–128CrossRefGoogle Scholar
  143. Standring S (2016) A brief history of topographical anatomy. J Anat 229:32–62CrossRefGoogle Scholar
  144. Stassart RM, Fledrich R, Velanac V, Brinkmann BG, Schwab MH, Meijer D, Sereda MW, Nave KA (2013) A role for Schwann cell-derived neuregulin-1 in remyelination. Nat Neurosci 16:48–54CrossRefGoogle Scholar
  145. Steinrück CO (1838) De nervorum regeneratione. Decker, BerlinGoogle Scholar
  146. Sulaiman OA, Gordon T (2000) Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination and size. Glia 32:234–246CrossRefGoogle Scholar
  147. Sunderland S (1945a) The intraneural topography of the radial, median, and ulnar nerves. Brain 68:243–299CrossRefGoogle Scholar
  148. Sunderland S (1945b) The adipose tissue of peripheral nerves. Brain 68:118–122CrossRefGoogle Scholar
  149. Sunderland S (1951) A classification of peripheral nerve injuries producing loss of function. Brain 4:491–516CrossRefGoogle Scholar
  150. Swan J (1820) A dissertation on the treatment of morbid local affections of nerves. Drury, LondonGoogle Scholar
  151. Sykes AH (2000) Wallerian degeneration. In: Koehler PJ, Bruyn GW, Pearce JM (eds) Neurological eponyms. Oxford University Press, Oxford, pp 63–70Google Scholar
  152. Szynkaruk M, Kemp SW, Wood MD, Gordon T, Borschel GH (2013) Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. Tissue Eng Part B Rev 19:83–96CrossRefGoogle Scholar
  153. Terzis JK, Sun DD, Thanos PK (1997) Historical and basic science review: past, present, and future of nerve repair. J Reconstr Microsurg 13:215–225CrossRefGoogle Scholar
  154. Tinel J (1917) Nerve wounds. Symptomatology of peripheral nerve lesions caused by war wounds (eds and trans: Rothwell F, Joll CA). William Wood and Company, New YorkGoogle Scholar
  155. Topp KS (2015) Nerve biomechanics. In: Standring S (ed) Gray’s anatomy. The anatomical basis of clinical practice, 41st edn. Elsevier, Amsterdam. Commentary 9.1Google Scholar
  156. Tos P, Colzani G, Ciclamini D, Titolo P, Pugliese P, Artiaco S (2014) Clinical applications of end-to-side neurorrhaphy: an update. Biomed Res Int 2014:646128CrossRefGoogle Scholar
  157. Trumble TE, McCallister WV (2000) Repair of peripheral nerve defects in the upper extremity. Hand Clin 16:37–52Google Scholar
  158. Tsao JW, George EB, Griffin JW (1999) Temperature modulation reveals three distinct stages of Wallerian degeneration. J Neurosci 19:4718–4726CrossRefGoogle Scholar
  159. Tung TH (2014) Nerve transfers. Clin Plast Surg 41:551–559CrossRefGoogle Scholar
  160. Tuttle H (1913) Exposure of the brachial plexus with nerve transplantation. JAMA 61:15–17CrossRefGoogle Scholar
  161. Ushiki T, Ide C (1990) Three-dimensional organization of the collagen fibrils in the rat sciatic nerve as revealed by transmission- and scanning electron microscopy. Cell Tissue Res 260:175–184CrossRefGoogle Scholar
  162. Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA (2010) Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A 107:11993–11998CrossRefGoogle Scholar
  163. Viterbo VF, Trindade JC, Hoshino K, Mazzoni Neto A (1992) Latero-terminal neuroraphy without removal of the epineural sheath. Experimental study in rats. Rev Paul Med 110:267–275Google Scholar
  164. Vizoso AD, Young JZ (1948) Internode length and fibre diameter in developing and regenerating nerves. J Anat 82:110–134Google Scholar
  165. von Fleischhacker R (1894) Lanfrank’s science of Cirurgie by Lanfranco, of Milan. Published for the Early English Text Society by Kegan Paul. Trench, Trübner, LondonGoogle Scholar
  166. Vulpian EFA (1866) Leçons sur la Physiologie Générale et Comparée du Système Nerveux. Cited in: De Felipe J, Jones EG (1991) Introduction to: Cajal’s degeneration and regeneration of the nervous system. Oxford University Press, OxfordGoogle Scholar
  167. Waldeyer-Hartz HWG (1891) Über einige neuere Forschungen im Gebiete der Anatomie des Zentralnervensystems. Deutsche Med. Wochenschr 17:1213–1218, 1244–1246, 1267–1269, 1287–1289, 1331–1332, 1352–1356. [Cited in Guillery RW (2007) Relating the neuron doctrine to the cell theory. Should contemporary knowledge change our view of the neuron doctrine? Brain Res Rev 55:411–421]Google Scholar
  168. Waller AV (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog and observations of the alterations produced thereby in the structure of their primitive fibres. Philos Trans R Soc Lond 140:423–429CrossRefGoogle Scholar
  169. Waller AV (1852) Nouvelles recherches sur la regeneration des fibres nerveuses. C R Hebd Acad Sci (Paris) 34:675–679Google Scholar
  170. Walters BC (2015) History of peripheral nerve repair. In: Tubbs RS, Rizk E, Shoja MM, Loukas M, Barbaro N, Spinner RJ (eds) Nerves and nerve injuries. Elsevier, Amsterdam, pp 23–36Google Scholar
  171. Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18CrossRefGoogle Scholar
  172. Wickens A (2015) A history of the brain. Psychology Press, LondonGoogle Scholar
  173. Williams LR, Longo FM, Powell HC, Lundborg G, Varon S (1983) Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol 218:460–470CrossRefGoogle Scholar
  174. Williams HB, Jabaley ME (1986) The importance of internal anatomy of the peripheral nerves to nerve repair in the forearm and hand. Hand Clin 2:689–707Google Scholar
  175. Wiltse LL, Pait GT (1998) Herophilus of Alexandria (325–255B.C.): the father of anatomy. Spine 2:1904–1914CrossRefGoogle Scholar
  176. Wojtkiewicz DM, Saunders J, Domeshek L, Novak CB, Kaskutas V, Mackinnon SE (2015) Social impact of peripheral nerve injuries. Hand (N Y) 10:161–167CrossRefGoogle Scholar
  177. Woodhall B (1947) Peripheral nerve injuries; basic data from the peripheral nerve registry concerning 7,050 nerve sutures and 67 nerve grafts. J Neurosurg 4:146–163CrossRefGoogle Scholar
  178. Yang H, He BR, Hao DJ (2015) Biological roles of olfactory ensheathing cells in facilitating neural regeneration: a systematic review. Mol Neurobiol 51:168–179CrossRefGoogle Scholar
  179. Yi C, Dahlin LB (2010) Impaired nerve regeneration and Schwann cell activation after repair with tension. Neuroreport 21:958–962CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.AnatomyKing’s College LondonLondonUK

Personalised recommendations