Advertisement

Bioactive Compounds of California Fan Palm Washingtonia filifera (Linden ex André) H. Wendl. ex de Bary

  • Yaser Hassan DewirEmail author
  • Mohammed Elsayed El-Mahrouk
  • Mayada Kadry Seliem
  • Hosakatte Niranjana Murthy
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

The fruit of the California fan palm (Washingtonia filifera) is underutilized. Phytochemical analysis of the fruit has demonstrated its high nutritional values. The fruit is a good source of carbohydrates, soluble sugars, and minerals including calcium, phosphorus, potassium, magnesium, and zinc. The fruit has several bioactive compounds having antioxidant, antibacterial, antifungal, and anti-inflammatory properties. Moreover, unlike other palm species, W. filifera tree is resistant to red palm weevil, which encourages its cultivation as a potential widely used food source.

Keywords

Arecaceae Food resources GC-MS analysis Nutritional value Underutilized fruits 

References

  1. 1.
    The Plant List (2019) Washingtonia. 16 May 2019. http://www.theplantlist.org/tpl1.1/search?q=Washingtonia
  2. 2.
    Johnson DV (1998) Non-wood forest products 10: tropical palms. Food and Agriculture Organization of the United States (FAO), RomeGoogle Scholar
  3. 3.
    Bomhard ML (1950) Palm trees in the United States. Agriculture information bulletin, vol 22. U.S. Department of Agriculture, Forest Service, Washington, DC, p 26Google Scholar
  4. 4.
    Sudworth GB (1908) Forest trees of the Pacific slope. U.S. Department of Agriculture. Forest Service, Washington, DC, p 441CrossRefGoogle Scholar
  5. 5.
    Jepson WL (1910) The silva of California, vol 2. University of California Press, Berkeley, p 283Google Scholar
  6. 6.
    DeMason DA (1988) Embryo structure and storage reserves histochemistry in the palm Washingtonia filifera. Am J Bot 75:330–337.  https://doi.org/10.1002/j.1537-2197.1988.tb13447.xCrossRefGoogle Scholar
  7. 7.
    Cornett JW (1985) Unpublished notes. The Palm Springs Desert Museum. Palm Springs.  https://doi.org/10.1016/0022-1759(85)90439-9CrossRefPubMedGoogle Scholar
  8. 8.
    Turner RJ Jr, Wasson E (1997) Botanica: the illustrated A-Z of over 10,000 garden plants and how to cultivate them. Mynah, New YorkGoogle Scholar
  9. 9.
    Star F, Star K, Loope L (2003) Washingtonia spp. Mexican fan palm and California fan palm, Arecaceae. http://www.hear.org/Pier/pdf/pohreports/Washingtonia_spp.pdf. Accessed 24 Mar 2019
  10. 10.
    Watson RR, Preedy VR (2009) Bioactive foods in promoting health: fruits and vegetables. Academic, New YorkGoogle Scholar
  11. 11.
    Cornett JW (1987) Nutritional value of desert fan palm fruits. Principes 31:159–161Google Scholar
  12. 12.
    Facciola S (1990) Cornucopia – a source book of edible plants. Kampong Publications, Vista. ISBN 0-9628087-0-9Google Scholar
  13. 13.
    Nehdi IA (2011) Characteristics and composition of Washingtonia filifera H. Wendl. seed and seed oil. Food Chem 126:197–202.  https://doi.org/10.1016/j.foodchem.2010.10.099CrossRefGoogle Scholar
  14. 14.
    Amira EA, Behija SE, Beligh M, Lamia L, Manel I, Mohamed H, Lotfi A (2012) Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. J Agric Food Chem 60:10896–10902.  https://doi.org/10.1021/jf302602vCrossRefGoogle Scholar
  15. 15.
    Haider MS, Khan IA, Jaskani MJ, Naqvi SA, Khan MM (2014) Biochemical attributes of dates at three maturation stages. Emir J Food Agric 26:953–962.  https://doi.org/10.9755/ejfa.v26i11.18980CrossRefGoogle Scholar
  16. 16.
    Lemine M, Mint F, Mohamed Ahmed MVO, Ben Mohamed Maoulainine L, Bouna Zel AO, Samb A, Boukhary AOMSO (2014) Antioxidant activity of various Mauritanian date palm (Phoenix dactylifera L.) fruits at two edible ripening stages. Food Sci Nutr 2:700–705.  https://doi.org/10.1002/fsn3.167CrossRefGoogle Scholar
  17. 17.
    Nasri N, Khaldi A, Fady B, Triki S (2005) Fatty acids from seeds of Pinus pinea L.: composition and population profiling. Phytochemistry 66:1729–1735.  https://doi.org/10.1016/j.phytochem.2005.05.023CrossRefPubMedGoogle Scholar
  18. 18.
    Hemmati AA, Kalantari H, Siahpoosh A, Ghorbanzadeh B, Jamali H (2015) Anti-inflammatory effect of hydroalcoholic extract of the Washingtonia filifera seeds in carrageenan-induced Paw edema in rats. Jundishapur J Nat Pharm Prod 10:e19887.  https://doi.org/10.17795/jjnpp-19887CrossRefGoogle Scholar
  19. 19.
    Mazmanci MA (2011) Ethanol production from Washingtonia robusta fruits by using commercial yeast. Afr J Biotechnol 10:43–48Google Scholar
  20. 20.
    Aparna V, Dileep KV, Mandal P, Karthe P, Sadasivan C, Haridas M (2012) Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des 80:434–439.  https://doi.org/10.1111/j.1747-0285.2012.01418.xCrossRefPubMedGoogle Scholar
  21. 21.
    Guerrero RV, Abarca-Vargas R, Petricevich VL (2017) Chemical compounds and biological activity of an extract from Bougainvillea × Buttiana (var. Rose) Holttum and Standl. Int J Pharm Pharm Sci 9:42–46.  https://doi.org/10.22159/ijpps.2017v9i3.16190CrossRefGoogle Scholar
  22. 22.
    Rao MRK, Ravi A, Narayan S, Prabhu K (2016) Antioxidant study and GC MS analysis of an ayurvedic medicine ‘Talisa patradi Choornam. Inter J Pharmaceut Sci Rev Res 36:158–166Google Scholar
  23. 23.
    Teoh YP, Mat Don M (2014) Mycelia growth and production of total flavonoids and 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- by Schizophyllum commune using a bubble column bioreactor considering aeration effect and mass transfer study. Chem Biochem Eng Q 28:553–559CrossRefGoogle Scholar
  24. 24.
    Foo LW, Salleh E, Mamat SNH (2015) Extraction and qualitative analysis of Piper betle leaves for antimicrobial activities. Int J Eng Technol Sci Res 2:1–8Google Scholar
  25. 25.
    Burdock GA (1997) Encyclopedia of food and color additives. CRC press, Boca Raton1, p 3153Google Scholar
  26. 26.
    Mouret A, Leclercq L, Mühlbauer A, Nardello-Rataj V (2014) Eco-friendly solvents and amphiphilic catalytic polyoxometalate nanoparticles: a winning combination for olefin epoxidation. Green Chem 16:269–278CrossRefGoogle Scholar
  27. 27.
    Litchfield C (1970) Taxonomic patterns in the fat content, fatty acid composition, and triglyceride composition of Palmae seeds. Chem Phys Lipids 4:96–103.  https://doi.org/10.1016/0009-3084(70)90066-6CrossRefGoogle Scholar
  28. 28.
    Sekhar KNC, DeMason DA (1988) Quantitative ultrastructure and protein composition of date palm (Phoenix dactylifera) seeds: a comparative study of endosperm vs. embryo. Am J Bot 75:338–342.  https://doi.org/10.1002/j.1537-2197.1988.tb13448.xCrossRefGoogle Scholar
  29. 29.
    Williams CA, Harborne JB, Clifford HT (1973) Negatively charged flavones and tricin as chemosystematic markers in the Palmae. Phytochemistry 12:2417–2430.  https://doi.org/10.1016/0031-9422(73)80449-2CrossRefGoogle Scholar
  30. 30.
    Harborne JB (1975) Flavonoid sulphates: a new class of Sulphur compounds in higher plants. Phytochem 14:1147–1155CrossRefGoogle Scholar
  31. 31.
    El-Sayed NH, Ammar NM, Al-Okbi SY, El-Kassem ALT, Mabry TJ (2006) Antioxidant activity and two new flavonoids from Washingtonia filifera. Nat Prod Res 20:57–61.  https://doi.org/10.1080/1478641500059276CrossRefPubMedGoogle Scholar
  32. 32.
    Jensen PR, Jenkins KM, Porter D, Fenical W (1998) Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudinum against Zoosporic Fungi. Appl Environ Microbiol 64:1490–1496PubMedPubMedCentralGoogle Scholar
  33. 33.
    Groult H, García-Álvarez I, Romero-Ramírez L, Nieto-Sampedro M, Herranz F, Fernández-Mayoralas A, Ruiz-Cabello J (2018) Micellar iron oxide nanoparticles coated with anti-tumor glycosides. Nanomaterials 8(567). 14 pagesCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ciriminna R, Fidalgo A, Ilharco LM, Pagliaro M (2018) Dihydroxyacetone: an updated insight into an important bioproduct. Chem Open 7:233–236Google Scholar
  35. 35.
    Ponnamma SU, Manjunath K (2012) GC-MS analysis of phytocomponents in the methanolic extract of Justicia wynaadensis (NEES) T. Anders. Int J Pharma Bio Sci 3:570–576Google Scholar
  36. 36.
    Tyagi T, Agarwal M (2017) Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. J Pharmacog Phytochem 6:195–206Google Scholar
  37. 37.
    Krishnamoorthy K, Subramaniam P (2014) Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS. Int Sch Res Notices 567409. 13 pages.  https://doi.org/10.1155/2014/567409CrossRefGoogle Scholar
  38. 38.
    Al-Marzoqi AH, Hameed H, Idan SA (2015) Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS). Afr J Biotechnol 14:2812–2830CrossRefGoogle Scholar
  39. 39.
    Ojekale AB, Lawal OA, Segun AA, Samuel FO, Ismaila AI, Opoku AR (2013) Volatile constituents, antioxidant and insecticidal activities of essential oil from the leaves of Thaumatococcus daniellii (Benn.) Benth. from Nigeria. J Pharm 3:1–5Google Scholar
  40. 40.
    Dubal KN, Ghorpande PN, Kale MV (2013) Studies on bioactive compounds of Tectaria coadunata (Wall. Ex Hook & Grev.) C.Chr. Asian J Pharmaceut Clin Res 6:186–187Google Scholar
  41. 41.
    Hassan SR, Zaman NQ, Dahlan I (2017) Influence of seed loads on start-up of modified anaerobic hybrid baffled (MAHB) reactor treating recycled paper wastewater. Eng Heritage J 1:5–9CrossRefGoogle Scholar
  42. 42.
    Ghosh SK (2017) Waste water recycling and management. 7th Icon SWM-ISWMAW, vol 3. Springer, New York.  https://doi.org/10.1007/978-981-13-2619-6CrossRefGoogle Scholar
  43. 43.
    Venkatesh R, Vidya R, Kalaivani K (2014) Gas chromatography and mass spectrometry analysis of Solanum villosum (Mill) (Solanaceae). Int J Pharm Sci Res 5:5283–5287Google Scholar
  44. 44.
    Barranco P, de la Pena JA, Martı’n MM, Cabello T (2000) Host rank for Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae) and host diameter. Bol San Veg Plagas 26:73–78Google Scholar
  45. 45.
    EPPO (European and Mediterranean Plant Protection Organization) (2008) Data sheets on quarantine pests. Rhynchophorus ferrugineus. EPPO Bull 38:55–59.  https://doi.org/10.1111/j.1365-2338.2008.01195.xCrossRefGoogle Scholar
  46. 46.
    Cangelosi B, Clematis F, Monroy F, Roversi PF, Troiano R, Curir P, Lanzotti V (2015) Filiferol, a chalconoid analogue from Washingtonia filifera possibly involved in the defence against the red palm weevil Rhynchophorus ferrugineus Olivier. Phytochem 115:216–221.  https://doi.org/10.1016/j.phytochem.2015.02.008CrossRefGoogle Scholar
  47. 47.
    Dembilio Ó, Jacas JA, Llácer E (2009) Are the palms Washingtonia filifera and Chamaerops humilis suitable hosts for the red palm weevil, Rhynchophorus ferrugineus (col. curculionidae)? J Appl Entomol 133:565–567.  https://doi.org/10.1111/j.1439-0418.2009.01385.xCrossRefGoogle Scholar
  48. 48.
    Cangelosi B, Clematis F, Curir P, Monroy F (2016) Susceptibility and possible resistance mechanisms in the palm species Phoenix dactylifera, Chamaerops humilis and Washingtonia filifera against Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Bull Entomol Res 106:341–346.  https://doi.org/10.1017/S000748531500108XCrossRefPubMedGoogle Scholar
  49. 49.
    Elmann A, Telerman A, Erlank H, Mordechav M, Ofir R, Kashman Y (2013) Protective and antioxidant effects of a chalconoid from Pulicaria incisa on brain astrocytes. Oxidative Med Cell Longev 28:694398Google Scholar
  50. 50.
    Motta LF, Gaudio AC, Takahata Y (2006) Quantitative structure-activity relationships of a series of chalcone derivatives (1, 3-diphenyl-2-propen-1- one) as anti-plasmodium falciparum agents (anti-malaria agents). Internet Electron J Mol Des 5:555–569Google Scholar
  51. 51.
    Letafat B, Shakeri R, Emani S, Noushini S, Mohammadhossein N, Shirkavand N, Ardestani N, Safati M, Samadizadeh M, Letafat A, Shafice A, Foroumadi A (2013) Synthesis and in vitro cytotoxic activity of novel chalcone like agents. Iran J Basic Med Sci 16:1155–1162PubMedPubMedCentralGoogle Scholar
  52. 52.
    Asami A, Hirai Y, Shoji J (1991) Studies on the constituents of palmae plants. VI. Steroid saponins and flavonoids of leaves of Phoenix canariensis hort. ex Chabaud, P. humilis Royle var. hanceana Becc., P. dactylifera L., and Licuala spinosa Wurmb. Chem Pharm Bull 39:2053–2056.  https://doi.org/10.1248/cpb.39.2053CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yaser Hassan Dewir
    • 1
    • 2
    Email author
  • Mohammed Elsayed El-Mahrouk
    • 2
  • Mayada Kadry Seliem
    • 3
  • Hosakatte Niranjana Murthy
    • 4
    • 5
  1. 1.Plant Production Department, College of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Horticulture, Faculty of AgricultureKafrelsheikh UniversityKafr El-SheikhEgypt
  3. 3.Ornamental and Floriculture DepartmentHorticulture Research InstituteAntoniades, AlexandriaEgypt
  4. 4.Department of BotanyKarnatak UniversityDharwadIndia
  5. 5.Research Center for the Development of Advanced Horticultural TechnologyChungbuk National UniversityCheongjuRepublic of Korea

Section editors and affiliations

  • Hosakatte Niranjana Murthy
    • 1
    • 2
  1. 1.Department of BotanyKarnatak UniversityDharwadIndia
  2. 2.Research Center for the Development of Advanced Horticultural TechnologyChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations