Advertisement

Therapeutic, Phytochemistry, and Pharmacology of Acorns (Quercus Nuts): A Review

  • Ana F. Vinha
  • João C. M. BarreiraEmail author
  • Isabel C. F. R. Ferreira
  • M. Beatriz P. P. Oliveira
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

The current global food system must adapt to the expected growth of world population. This adaptation will probably include an increased consumption of edible wild foods, due to their richness in micronutrients and bioactive compounds, besides providing a cost-effective and sustainable way of improving caloric food security. Acorns (Quercus nuts) have been presenting an important role on the rural economy. In fact, their nutritional value; high contents in bioactive compounds; biological activity such as antioxidant, anticarcinogenic, and cardioprotective properties; and use in the treatment of specific diseases such as atherosclerosis, diabetes, or Alzheimer’s disease have raised the interest in integrating acorns into the human diet. In the present review, we present the chemical constituents of acorns and their biological activities.

Keywords

Acorns Biological properties Nutritional composition Phytochemicals Quercus Therapeutic 

References

  1. 1.
    Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D (2017) Oaks and people: a long journey together. In: Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D (eds) Oaks physiological ecology. Exploring the functional diversity of Genus Quercus L. Springer International Publishing, Cham, pp 1–11CrossRefGoogle Scholar
  2. 2.
    Wang X (2013) Indicating function of Shanxi Zhongtiaoshan mountain oak forests to forest restoration and reconstruction in North China. For Econ 8:74–76Google Scholar
  3. 3.
    Villar-Salvador P, Peñuelas JL, Nicolás-Peragón JL, Benito LF, Domínguez-Lerena S (2013) Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations? New For 44:733–775CrossRefGoogle Scholar
  4. 4.
    Knoot TG, Schulte LA, Rickenbach M (2010) Oak conservation and restoration on private forestlands: negotiating a social-ecological landscape. Environ Manag 45:155–164CrossRefGoogle Scholar
  5. 5.
    Tantray YR, Wani MS, Hussain A (2017) Genus Quercus: an overview. Int J Adv Res Sci Eng 6:1880–1886Google Scholar
  6. 6.
    Tejerina D, García-Torres S, Vaca MC, Vásquez FM, Cava R (2011) Acorns (Quercus rotundifolia Lam.) and grass as natural sources of antioxidants and fatty acids in the “montanera” feeding of Iberian pig: intra- and inter-annual variations. Food Chem 124:997–1004CrossRefGoogle Scholar
  7. 7.
    Shi W, Villar-Salvador P, Li G, Jiang X (2019) Acorn size is more important than nursery fertilization for outplanting performance of Quercus variabilis container seedlings. Ann For Sci 76:22–34CrossRefGoogle Scholar
  8. 8.
    Rosenberg D (2008) The possible use of acorns in past economies of the Southern Levant: a staple food or a negligible food source? Levant 40(2):167–175CrossRefGoogle Scholar
  9. 9.
    Silva A, Costa EM, Borges A, Carvalho AP, Monteiro MJ, Pintado MME (2016) Nutritional characterization of acorn flour (a traditional component of the Mediterranean gastronomical folklore). J Food Meas Charact 10:584–588CrossRefGoogle Scholar
  10. 10.
    Jacomet S (2009) Plant economy and village life in Neolithic lake dwellings at the time of the Alpine iceman. Veg Hist Archaeobotany 18:47–59CrossRefGoogle Scholar
  11. 11.
    Łuczaj Ł, Adamczak A, Duda M (2014) Tannin content in acorns (Quercus spp.) from Poland. Dendrobiology 72:103–111CrossRefGoogle Scholar
  12. 12.
    Rakić S, Petrović S, Kukić J, Jadranin M, Tešević V, Povrenović D, Šiler-Marinković S (2007) Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chem 104:830–834CrossRefGoogle Scholar
  13. 13.
    Pour MB, Bahmaninia E, Ebrahimi R, Fayazi J (2010) Evaluate effects of different inclusion of oak kernel with determine food potential oak kernel substitute with corn seed on broiler chicken’s ration. Res J Biol Sci 5:17–19CrossRefGoogle Scholar
  14. 14.
    Deforce K, Bastiaens J, Calster HV, Vanhoutte S (2009) Iron age acorns from Boezing (Belgium): the role of acorn consumption in prehistory. Archaol Korrespondenzbl 39:381–392Google Scholar
  15. 15.
    Vinha AF, Barreira JCM, Costa ASG, Oliveira MBPP (2016) A new age for Quercus spp. fruits: review on nutritional and phytochemical composition and related biological activities of acorns. Compr Rev Food Sci Food Saf 15:947–981CrossRefGoogle Scholar
  16. 16.
    Bonito A, Varone L, Gratani L (2011) Relationship between acorn size and seedling morphological and physiological traits of Quercus ilex L. from different climates. Photosynthetica 49(1):75–86CrossRefGoogle Scholar
  17. 17.
    Galván JV, Novo JJJ, Cabrera AG, Ariza D, García-Olmo J, Cerrillo RMN (2012) Population variability based on the morphometry and chemical composition of the acorn in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.). Eur J For Res 131(4):893–904CrossRefGoogle Scholar
  18. 18.
    Clark SL, Schlarbaum SE (2018) Effects of acorn size and mass on seedling quality of northern red oak (Quercus rubra). New For 49:571–583CrossRefGoogle Scholar
  19. 19.
    González-Rodríquez V, Villar R, Navarro-Cerrillo RM (2011) Maternal influences on seed mass effect and initial seedling growth in four Quercus species. Acta Oecol 37:1–9CrossRefGoogle Scholar
  20. 20.
    Landergott U, Gugerli F, Hoebee SE, Finkeldey R, Holderegger R (2012) Effects of seed mass on seedling height and competition in European white oaks. Flora 207:721–772CrossRefGoogle Scholar
  21. 21.
    Yi X, Zhang J, Wang Z (2015) Large and small acorns contribute equally to early-stage oak seedlings: a multiple species study. Eur J For Res 134:1019–1026CrossRefGoogle Scholar
  22. 22.
    Spiertz H (2010) Food production, crops and sustainability: restoring confidence in science and technology. Curr Opin Environ Sustain 2:439–443CrossRefGoogle Scholar
  23. 23.
    Jamnadass RH, Dawson IK, Franzel S, Leakey RRB, Mithöfer D, Akinnifesi FK, Tchoundjeu Z (2011) Improving livelihoods and nutrition in sub-Saharan Africa through the promotion of indigenous and exotic fruit production in smallholders’ agroforestry systems: a review. Int For Rev 13:338–354Google Scholar
  24. 24.
    Powell B, Hall J, Johns T (2011) Forest cover, use and dietary intake in the East Usambara Mountains, Tanzania. Int For Rev 13:305–324Google Scholar
  25. 25.
    Mahfoudhi N, Ksouri R, Hamdi S (2016) Nanoemulsions as potential delivery systems for bioactive compounds in food systems: preparation, characterization, and applications in food industry. Emu 3:365–403CrossRefGoogle Scholar
  26. 26.
    Sun X, Kang H, Du H, Hu H, Zhou J, Hou J, Zhou X, Lui C (2012) Stoichiometric traits of oriental oak (Quercus variabilis) acorns and their variations in relation to environmental variables across temperate to subtropical China. Ecol Res 27:765–773CrossRefGoogle Scholar
  27. 27.
    Rababah T, Ereifej K, Al-Mahasneh M, Alhamad M, Alrababah M, Al-u’datt M (2008) The physicochemical composition of acorns for two Mediterranean Quercus species. J Agric Sci 4:131–137Google Scholar
  28. 28.
    Gea-Izquierdo G, Cañellas I, Montero G (2006) Acorn production in Spanish holm oak woodlands. For Syst 15:339–354Google Scholar
  29. 29.
    Correia RT, Borges KC, Medeiros MF, Genovese MI (2012) Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues. Food Sci Technol Int 18:539–547PubMedCrossRefGoogle Scholar
  30. 30.
    Özcan T (2007) Characterization of Turkish Quercus L. taxa based on fatty acid compositions of the acorns. J Am Oil Chem Soc 84:653–662CrossRefGoogle Scholar
  31. 31.
    Afazal-Raffi Z, Dodd RS, Pelleau Y (1992) Mediterranean evergreen oak diversity: morphological and chemical variation of acorns. Can J Bot 70:1459–1466CrossRefGoogle Scholar
  32. 32.
    Aguilera JF, Nieto R, Rivera M, Garcia MA (2002) Amino acid availability and energy value of acorn in the Iberian pig. Livest Prod Sci 77:227–239CrossRefGoogle Scholar
  33. 33.
    Cantos E, Espín JC, López-Bote C, de la Hoz L, Ordóñez JA, Tomás-Barberán FA (2003) Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs. J Agric Food Chem 51:6248–6255PubMedCrossRefGoogle Scholar
  34. 34.
    Rabhi F, Narváez-Rivas M, Tlili N, Boukhchina S, León-Camacho M (2016) Sterol, aliphatic alcohol and tocopherol contents of Quercus ilex and Quercus suber from different regions. Ind Crop Prod 83:781–786CrossRefGoogle Scholar
  35. 35.
    Petrović S, Šobajić S, Rakić S, Tomić A, Kukić J (2004) Investigation of kernel oils of Quercus robur and Quercus cerris. Chem Nat Compd 40:420–422CrossRefGoogle Scholar
  36. 36.
    Karolyi D, Salajpal K, Kis G, Đikic M, Juric I (2007) Influence of finishing diet on fatty acid profile of longissimus muscle of Black Slavonian pigs. Agric Sci Rev 13:176–179Google Scholar
  37. 37.
    Ostlund R, Lin X (2006) Regulation of cholesterol absorption by phytosterols. Curr Atheroscler Rep 8:487–491PubMedCrossRefGoogle Scholar
  38. 38.
    Barreira JCM, Ferreira ICFR (2015) Steroids in natural matrices: chemical features and bioactive properties. In: Gupta VK, Tuohy MG (eds) Biotechnology of bioactive compounds: sources and applications. Wiley, Chichester, pp 395–432Google Scholar
  39. 39.
    Volin P (2001) Analysis of steroidal lipids by gas and liquid chromatography. J Chromatogr A 935:125–140PubMedCrossRefGoogle Scholar
  40. 40.
    Hilmarsson H, Traustason B, Kristmundsdottir T, Thormar H (2007) Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels. Arch Virol 152:2225–2236PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kim JJ, Ghimire BK, Shin HC, Lee KJ, Song KS, Chung YS, Yoon TS, Lee YJ, Kim EH, Chung IM (2012) Comparison of phenolic compounds content in indeciduous Quercus species. J Med Plant Res 6:5228–5239CrossRefGoogle Scholar
  42. 42.
    Brossa R, Casals I, Pintó-Marijuan M, Fleck I (2009) Leaf flavonoid content in Quercus ilex L. resprouts and its seasonal variation. Trees 23:401–408CrossRefGoogle Scholar
  43. 43.
    Saffarzadeh A, Vincze L, Csapo J (1999) Determination of the chemical composition of acorn (Quercus branti), Pistacia atlantica and Pistacia Khinjk seeds as non-conventional feedstuffs. Acta Agr Kapos 3:59–69Google Scholar
  44. 44.
    Cadahía E, Muñoz L, Fernández de Simón B, García-Vallejo MC (2001) Changes in low molecular weight phenolic compounds in Spanish, French, and American oak woods during natural seasoning and toasting. J Agric Food Chem 49:1790–1798PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ferreira-Dias S, Valente DG, Abreu JMF (2003) Pattern recognition of acorns from different Quercus species based on oil content and fatty acid profile. Grasas Aceites 54:384–391Google Scholar
  46. 46.
    Andrenšek S, Simonovska B, Vovk I, Fyhrquist P, Vuorela H, Vuorela P (2004) Antimicrobial and antioxidative enrichment of oak (Quercus robur) bark by rotation planar extraction using ExtraChrom. Int J Food Microbiol 92:181–187PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Marquart TJ, Scholes CM, Chapman JM (2007) Distribution, quantification and identification of tannins in acorns from red and white oak trees. The Midwest regional meeting, 7–10 November, Kansas CityGoogle Scholar
  48. 48.
    Vanhessche BA, Vandermillion AM, Scott DE, Scholes CM, Chapman JM (2007) Distribution, quantification and identification of tannins in acorns from blackjack, sawtooth and Texas live oak trees. The Midwest regional meeting, 7–10 NovemberGoogle Scholar
  49. 49.
    Rocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Reynoso-Camacho R, Ramos-Gómez M, Garcia-Gasca T, Rodríguez-Muñoz ME, Guzmán-Maldonado SH, Medina-Torres L, Lujan-García BA (2009) Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem 115:132–135CrossRefGoogle Scholar
  50. 50.
    Popović BM, Štajner D, Ždero R, Orlović S, Galić Z (2013) Antioxidant characterization of oak extracts combining spectrophotometric assays and chemometrics. Sci World J 2013:1–8Google Scholar
  51. 51.
    Castro-Vázquez L, Alañón ME, Ricardo-da-Silva JM (2013) Valuation of Portuguese and Spanish Quercus pyrenaica and Castanea sativa species used in cooperage as natural source of phenolic compounds. Eur Food Res Technol 237:367–375CrossRefGoogle Scholar
  52. 52.
    García-Villalba R, Espín JC, Tomás-Barberán FA, Rocha-Guzmán NE (2017) Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J Food Compos Anal 63:38–46CrossRefGoogle Scholar
  53. 53.
    Karimi A, Moradi MT (2015) Total phenolic compounds and in vitro antioxidant potential of crude methanol extract and the correspond fractions of Quercus brantii L. acorn. J Herb Med Pharmacol 4:35–39Google Scholar
  54. 54.
    Aslani A, Ghannadi A, Najafi H (2013) Design, formulation and evaluation of a mucoadhesive gel from Quercus brantii L. and Coriandrum sativum L. as periodontal drug delivery. Adv Biomed Res 2013:2–21Google Scholar
  55. 55.
    Moradi M, Karimi A, Alidadi S (2016) In vitro antiproliferative and apoptosis-inducing activities of crude ethyle alcohole extract of Quercus brantii L. acorn and subsequent fractions. Chin J Nat Med 14:196–202PubMedPubMedCentralGoogle Scholar
  56. 56.
    Hobby GH, Quave CL, Nelson K, Compadre CM, Beenken KE, Smeltzer MS (2012) Quercus cerris extracts limit Staphylococcus aureus biofilm formation. J Ethnopharmacol 144:812–815PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jamil M, Ul Haq I, Mirza B, Qayyum M (2012) Isolation of antibacterial compounds from Quercus dilatata L. through bioassay guided fractionation. Ann Clin Microbiol Antimicrob 11(11)PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Moreno-Jimenez MR, Trujillo-Esquivel F, Gallegos-Corona MA, Reynoso-Camacho R, Gonzalez-Laredo RF, Gallegos-Infante JA, Rocha-Guzman NE, Ramos-Gomez M (2015) Antioxidant, anti-inflammatory and anticarcinogenic activities of edible red oak (Quercus spp.) infusions in rat colon carcinogenesis induced by 1,2-dimethylhydrazine. Food Chem Toxicol 80:144–153PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sánchez-Burgos JA, Ramírez-Mares MV, Larrosa MM, Gallegos-Infante JA, González-Laredo RF, Medina-Torres L, Rocha-Guzmán NE (2013) Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species. Ind Crop Prod 42:57–62CrossRefGoogle Scholar
  60. 60.
    Berahou A, Auhmani A, Fdil N, Benharref A, Jana M, Gadhi CA (2007) Antibacterial activity of Quercus ilex bark’s extracts. J Ethnopharmacol 112:426–429PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Gharzouli K, Khennouf S, Amira S, Gharzouli A (1999) Effects of aqueous extracts from Quercus ilex L. root bark, Punica granatum L. fruit peel and Artemisia herba-alba Asso leaves on ethanol-induced gastric damage in rats. Phytother Res 13:42–45PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Güllüce M, Adigüzel A, Oğütçü H, Sengül M, Karaman I, Sahin F (2004) Antimicrobial effects of Quercus ilex L. extract. Phytother Res 18:208–211PubMedCrossRefGoogle Scholar
  63. 63.
    Kaur G, Hamid H, Ali A, Alam MS, Athar M (2004) Antiinflammatory evaluation of alcoholic extract of galls of Quercus infectoria. J Ethnopharmacol 90:285–292PubMedCrossRefGoogle Scholar
  64. 64.
    Basri D, Fan S (2005) The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian J Pharmacol 37:26–29CrossRefGoogle Scholar
  65. 65.
    Uddin G, Rauf A (2012) Phytochemical screening, antimicrobial and antioxidant activities of aerial parts of Quercus robur L. J Med Plant Res 1:1–4Google Scholar
  66. 66.
    Custódio L, Patarra J, Alberício F, Neng NR, Nogueira JMF, Romano A (2015) Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer’s disease. Ind Crop Prod 64:45–51CrossRefGoogle Scholar
  67. 67.
    Sung SH, Kim KH, Jeon BT, Cheong SH, Park JH, Kim DH, Kweon HJ, Moon SH (2012) Antibacterial and antioxidant activities of tannins extracted from agricultural by-products. J Med Plant Res 6:3072–3079Google Scholar
  68. 68.
    Toori MA, Mirzaei M, Mirzaei N, Lamrood P, Mirzaei A (2013) Antioxidant and hepatoprotective effects of the internal layer of oak fruit (Jaft). J Med Plant Res 7:24–28Google Scholar
  69. 69.
    Akcan T, Gökçe R, Asensio M, Estevez M, Morcuende D (2017) Acorn (Quercus spp.) as a novel source of oleic acid and tocopherols for livestock and humans: discrimination of selected species from Mediterranean forest. J Food Sci Technol 54:3050–3057PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gezici S, Sekeroglu N (2019) Neuroprotective potential and phytochemical composition of acorn fruits. Ind Crop Prod 128:13–17CrossRefGoogle Scholar
  71. 71.
    Rtibi K, Hammamic I, Selmia S, Gramia D, Sebaia H, Amrib M, Marzouki L (2017) Phytochemical properties and pharmacological effects of Quercus ilex L. aqueous extract on gastrointestinal physiological parameters in vitro and in vivo. Biomed Pharmacother 94:787–793PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ana F. Vinha
    • 2
  • João C. M. Barreira
    • 1
    Email author
  • Isabel C. F. R. Ferreira
    • 1
  • M. Beatriz P. P. Oliveira
    • 2
  1. 1.Centro de Investigação de Montanha (CIMO), Instituto Politécnico de BragançaBragançaPortugal
  2. 2.Department of Chemical Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal

Section editors and affiliations

  • Hosakatte Niranjana Murthy
    • 1
    • 2
  1. 1.Department of BotanyKarnatak UniversityDharwadIndia
  2. 2.Department of Horticulture, Division of Animal, Horticultural and Food SciencesChungbuk National UniversityChenogjuRepublic of Korea

Personalised recommendations