Advertisement

Bioactive Compounds of Salacia chinensis L

  • Shrikant PatilEmail author
  • Parthraj Kshirsagar
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Different plant parts and water extracts of Salacia have extensively been consumed in many Asian countries as a food supplement to prevent obesity and diabetes. Studies suggest that extracts of Salacia chinensis regulate multiple enzymes in carbohydrate and lipid metabolism, viz., α-glucosidase, aldose reductase, and pancreatic lipase. The major phyto-constituents of S. chinensis are thiosugar sulfonium sulfates such as salacinol, kotalanol, ponkoranol, and salaprinol and their corresponding de-0-sulfonated compounds. In addition, triterpenes, sesquiterpenes, lignans, xanthones, flavanols, flavonoids, and proanthocyanidins have been reported in S. chinensis extracts, which are attributed to other important medicinal properties. Phenolic glycosides, megastigmane glycosides, and certain triterpenes such as foliasalacins and 1,3-diketofriedelane derivatives have not been studied in detail for their pharmaceutical potentials.

Keywords

Antidiabetic Antiobesity Kotalanol Mangiferin Salacia chinensis Salacinol 

Notes

Acknowledgments

The authors SP thank to UGC New Delhi for Dr. D. S. Kothari fellowship award and PK thanks to SERB New Delhi for NPDF award.

References

  1. 1.
    Jayaweera DMA (1981) Medicinal plants (indigenous and exotic) used in Ceylon. National Science Council of Sri Lanka, ColomboGoogle Scholar
  2. 2.
    Govindaraj Y, Melanaphuru V, Agrahari V, Gupta S, Nema RK (2009) Genotoxicity studies of Magiferin isolated from Salacia chinensis Linn. Acad J Plant Sci 2:199–204Google Scholar
  3. 3.
    Singh NP, Vohra JN, Hajra PK, Singh DK (2000) Flora of India. Calcutta: Botanical survey of India vol. 5. p. 150–162Google Scholar
  4. 4.
    Yoshikawa M, Pongpiriyadacha Y, Kishi A, Kageura T, Wang T, Morikawa T, Matsuda H (2003) Biological activities of Salacia chinensis originating in Thailand: the quality evaluation guided by alpha-glucosidase inhibitory activity. Yakugaku Zasshi 123:871–880CrossRefGoogle Scholar
  5. 5.
    Morikawa T, Akaki J, Ninomiya K, Kinouchi E, Tanabe G, Pongpiriyadacha Y, Yoshikawa M, Muraoka O, Morikawa T, Akaki J, Ninomiya K, Kinouchi E, Tanabe G, Pongpiriyadacha Y, Yoshikawa M, Muraoka O (2015) Salacinol and related analogs: new leads for type 2 diabetes therapeutic candidates from the Thai traditional natural medicine Salacia chinensis. Nutrients 7:1480–1493.  https://doi.org/10.3390/nu7031480CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100.  https://doi.org/10.1016/S0378-8741(02)00059-4CrossRefPubMedGoogle Scholar
  7. 7.
    Arunakumara K, Subasinghe S (2011) Salacia reticulata Wight: a review of botany, phytochemistry and pharmacology. Trop Agric Res Ext 13:41–47.  https://doi.org/10.4038/tare.v13i2.3137CrossRefGoogle Scholar
  8. 8.
    Jihong Y, Shaozhong L, Jingfeng S, Kobayashi M, Akaki J, Yamashita K, Tamesada M, Umemura T (2011) Effects of Salacia chinensis extract on reproductive outcome in rats. Food Chem Toxicol 49:57–60.  https://doi.org/10.1016/j.fct.2010.09.031CrossRefPubMedGoogle Scholar
  9. 9.
    Yoshikawa M, Xu F, Nakamura S, Wang T, Matsuda H, Tanabe G, Muraoka O (2008) Salaprinol and ponkoranol with thiosugar sulfonium sulfate structure from Salacia prinoides and α- glucosidase inhibitory activity of ponkoranol and kotalanol desulfate. Heterocycles 75:1397–1405.  https://doi.org/10.3987/COM-07-11315CrossRefGoogle Scholar
  10. 10.
    Akaki J, Morikawa T, Miyake S, Ninomiya K, Okada M, Tanabe G, Pongpiriyadacha Y, Yoshikawa M, Muraoka O (2014) Evaluation of Salacia species as anti-diabetic natural resources based on quantitative analysis of eight sulphonium constituents: a new class of α-glucosidase inhibitors. Phytochem Anal 25:544–550.  https://doi.org/10.1002/pca.2525CrossRefPubMedGoogle Scholar
  11. 11.
    Chavan JJ, Ghadage DM, Kshirsagar PR, Kudale SS (2015) Optimization of extraction techniques and RP-HPLC analysis of antidiabetic and anticancer drug Mangiferin from roots of ‘Saptarangi’ (Salacia chinensis L.). J Liq Chromatogr Relat Technol 38:963–969.  https://doi.org/10.1080/10826076.2014.999199CrossRefGoogle Scholar
  12. 12.
    Xie W, Tanabe G, Akaki J, Morikawa T, Ninomiya K, Minematsu T, Yoshikawa M, Wu X, Muraoka O (2011) Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors. Bioorg Med Chem 19:2015–2022.  https://doi.org/10.1016/j.bmc.2011.01.052CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Nakamura S, Pongpiriyadacha Y, Matsuda H, Yoshikawa M (2008) Absolute structures of new megastigmane glycosides, foliasalaciosides E(1), E(2), E(3), F, G, H, and I from the leaves of Salacia chinensis. Chem Pharm Bull(Tokyo) 56:547–553CrossRefGoogle Scholar
  14. 14.
    Nakamura S, Zhang Y, Wang T, Matsuda H, Yoshikawa M (2008) New phenolic glycosides from the leaves of Salacia chinensis. Heterocycles 75:1435–1446.  https://doi.org/10.3987/COM-08-11338CrossRefGoogle Scholar
  15. 15.
    Yoshikawa M, Nakamura S, Zhang Y, Pongpiriyadacha Y, Wang T, Matsuda H (2008) Megastigmane glycosides from the leaves of Salacia chinensis. Heterocycles 75:131–143.  https://doi.org/10.3987/COM-07-11193CrossRefGoogle Scholar
  16. 16.
    Ghadage DM, Kshirsagar PR, Pai SR, Chavan JJ (2017) Extraction efficiency, phytochemical profiles and antioxidative properties of different parts of Saptarangi (Salacia chinensis L.) – an important underutilized plant. Biochem Biophys Reports 12:79–90.  https://doi.org/10.1016/j.bbrep.2017.08.012CrossRefGoogle Scholar
  17. 17.
    Gao X-H, Xie N, Feng F (2008) Studies on chemical constituents of Salacia prinoides. Zhong Yao Cai 31:1348–1351PubMedGoogle Scholar
  18. 18.
    Tewari NC, Ayengar KNN, Rangaswami S (1971) Structure of some crystalline components of Salacia prenoides. Curr Sci 40:601–602Google Scholar
  19. 19.
    Zhang Y, Nakamura S, Wang T, Matsuda H, Yoshikawa M (2008) The absolute stereostructures of three rare D:B-friedobaccharane skeleton triterpenes from the leaves of Salacia chinensis. Tetrahedron 64:7347–7352.  https://doi.org/10.1016/j.tet.2008.05.054CrossRefGoogle Scholar
  20. 20.
    Yoshikawa M, Zhang Y, Wang T, Nakamura S, Matsuda H (2008) New triterpene constituents, foliasalacins A 1 -A 4, B 1 -B 3, and C, from the leaves of Salacia chinensis. ChemInform 39:915–920.  https://doi.org/10.1002/chin.200848179CrossRefGoogle Scholar
  21. 21.
    Joshi BS, Kamat VN, Viswanathan N (1973) Triterpenes of Salacia prinoides DC. Tetrahedron 29:1365–1374.  https://doi.org/10.1016/S0040-4020(01)83157-4CrossRefGoogle Scholar
  22. 22.
    Rogers D, Williams DJ, Joshi BS, Kamat VN, Viswanathan N (1974) Structure of a new triterpene ether from Salacia prinoides dc: x-ray investigation of the dibromo derivative. Tetrahedron Lett 15:63–66.  https://doi.org/10.1016/S0040-4039(01)82137-7CrossRefGoogle Scholar
  23. 23.
    Kishi A, Morikawa T, Matsuda H, Yoshikawa M (2003) Structures of new friedelane- and norfriedelane-type triterpenes and polyacylated eudesmane-type sesquiterpene from Salacia chinensis LINN. (S. prinoides DC., Hippocrateaceae) and radical scavenging activities of principal constituents. Chem Pharm Bull(Tokyo) 51:1051–1055CrossRefGoogle Scholar
  24. 24.
    Minh TT, Nguyen THA, Thang VD, Van Sung T (2008) Study on chemical constituents of Salacia chinensis L. collected in Vietnam. Zeitschrift fur Naturforsch - Sect B J Chem Sci 63:1411–1414.  https://doi.org/10.1515/znb-2008-1211CrossRefGoogle Scholar
  25. 25.
    Tewari NC, Narayan Ayengar KN, Rangaswami S (1974) Triterpenes of the root-bark of Salacia prenoides DC. J Chem Soc Perkin 1(1):146–152.  https://doi.org/10.1039/P19740000146CrossRefGoogle Scholar
  26. 26.
    Morikawa T, Kishi A, Pongpiriyadacha Y, Matsuda H, Yoshikawa M (2003) Structures of new Friedelane-type triterpenes and Eudesmane-type Sesquiterpene and aldose reductase inhibitors from Salacia chinensis.  https://doi.org/10.1021/NP0301543CrossRefGoogle Scholar
  27. 27.
    Heymann H, Bhatnagar SS, Fieser LF (1954) Characterization of two substances isolated from an Indian shrub. J Am Chem Soc 76:3689–3693.  https://doi.org/10.1021/ja01643a028CrossRefGoogle Scholar
  28. 28.
    Krishnan V, Rangaswami S (1967) Proanthocyanidins of Salacia chinensis linn. Tetrahedron Lett 8:2441–2446.  https://doi.org/10.1016/S0040-4039(00)90828-1CrossRefGoogle Scholar
  29. 29.
    Patwardhan A (2015) Evaluation of anti-diabetic property of extracts of different plant parts of Salacia chinensis Linn. J Biodiversity, Bioprospecting Dev 01:107.  https://doi.org/10.4172/2376-0214.1000107CrossRefGoogle Scholar
  30. 30.
    Matsuda H, Morikawa T, Yoshikawa M, Morikawa T, Tanabe G, Muraoka O (2005) Antidiabetogenic constituents from Salacia species. J Trad Med 22:145–153Google Scholar
  31. 31.
    Koteshwar P, Kadur RR, Allan JJ, Goudar K, Kudiganti V, Agarwal A (2013) Effect of NR-Salacia on post-prandial hyperglycemia: a randomized double blind, placebo-controlled, crossover study in healthy volunteers. Pharmacogn Mag 9:344.  https://doi.org/10.4103/0973-1296.117831CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kobayashi M, Akaki J, Yamashita K, Morikawa T, Ninomiya K, Muraoka O, Yoshikawa M (2010) Suppressive effect of the tablet containing Salacia chinensis extract on postprandial blood glucose. J Diabetes Res 38:545–550Google Scholar
  33. 33.
    Kobayashi M, Akaki J, Yamaguchi Y, Yamasaki H, Ninomiya K, Pongpiriyadacha Y, Yoshikawa M, Muraoka O, Morikawa T (2019) Salacia chinensis stem extract and its thiosugar sulfonium constituent, neokotalanol, improves HbA1c levels in ob/ob mice. J Nat Med 73:584–588.  https://doi.org/10.1007/s11418-019-01311-wCrossRefPubMedGoogle Scholar
  34. 34.
    Sikarwar MS, Patil MB (2012) Antihyperlipidemic activity of Salacia chinensis root extracts in triton-induced and atherogenic diet-induced hyperlipidemic rats. Indian J Pharm 44:88–92.  https://doi.org/10.4103/0253-7613.91875CrossRefGoogle Scholar
  35. 35.
    Jeykodi S, Deshpande J, Juturu V (2016) Salacia extract improves postprandial glucose and insulin response: a randomized double-blind, placebo controlled, crossover study in healthy volunteers. J Diabetes Res 2016:1–9.  https://doi.org/10.1155/2016/7971831CrossRefGoogle Scholar
  36. 36.
    Sellamuthu PS, Arulselvan P, Fakurazi S, Kandasamy M (2014) Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocininduced diabetes. Pak J Pharm Sci 27:161–167PubMedGoogle Scholar
  37. 37.
    Sellamuthu PS, Arulselvan P, Muniappan BP, Kandasamy M (2012) Effect of mangiferin isolated from Salacia chinensis regulates the kidney carbohydrate metabolism in streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 2:S1583–S1587.  https://doi.org/10.1016/S2221-1691(12)60457-2CrossRefGoogle Scholar
  38. 38.
    Shirakawa J, Arakawa S, Tagawa T, Gotoh K, Oikawa N, Ohno R, Shinagawa M, Hatano K, Sugawa H, Ichimaru K, Kinoshita S, Furusawa C, Yamanaka M, Kobayashi M, Masuda S, Nagai M, Nagai R (2016) Salacia chinensis L. extract ameliorates abnormal glucose metabolism and improves the bone strength and accumulation of AGEs in type 1 diabetic rats. Food Funct 7:2508–2515.  https://doi.org/10.1039/C5FO01618ECrossRefPubMedGoogle Scholar
  39. 39.
    Sumalatha RBP, Ballal SR, Acharya S (2012) Studies on immunomodulatory effects of Salacia chinensis L. On albino rats. J Appl Pharm Sci.  https://doi.org/10.7324/JAPS.2012.2920
  40. 40.
    Sellamuthu PS, Muniappan BP, Perumal SM, Kandasamy M (2009) Antihyperglycemic effect of mangiferin in streptozotocin induced diabetic rats. J Health Sci 55:206–214.  https://doi.org/10.1248/jhs.55.206CrossRefGoogle Scholar
  41. 41.
    Nakamura S, Zhang Y, Matsuda H, Ninomiya K, Muraoka O, Yoshikawa M (2011) Chemical structures and hepatoprotective effects of constituents from the leaves of Salacia chinensis. Chem Pharm Bull(Tokyo) 59:1020–1028CrossRefGoogle Scholar
  42. 42.
    Asuti N (2010) Hepatoprotective activity of ethanolic extract of root bark of Salacia chinensis. J Pharm Res 3:833–834Google Scholar
  43. 43.
    Venkatasubramanian C, Devi R, Rohini E (2011) Effect of dehydrated Salacia prinoides on experimental mice and on NIDDM subjects. Indian J Sci Technol 4:366–372.  https://doi.org/10.17485/IJST/2011/V4I3/30002CrossRefGoogle Scholar
  44. 44.
    Jansakul C, Jusapalo N, Mahattanadul S (2005) Hypotensive effect of n-butanol extract from stem of Salacia chinensis in rats. Acta Hortic 678:107–114CrossRefGoogle Scholar
  45. 45.
    Singh RG, Rathore SS, Kumar R, Usha AA, Dubey GP (2010) Nephroprotective role of Salacia chinensis in diabetic CKD patients: a pilot study. Indian J Med Sci 64:378.  https://doi.org/10.4103/0019-5359.100341CrossRefPubMedGoogle Scholar
  46. 46.
    Minh TT, Anh NTH, Thang VD, Van ST (2010) Study on chemical constituents and cytotoxic activities of Salacia chinensis growing in Vietnam. Zeitschrift fur Naturforsch - Sect B J Chem Sci 65:1284–1288.  https://doi.org/10.1515/znb-2010-1017CrossRefGoogle Scholar
  47. 47.
    Kannaiyan M, Manuel VN, Raja V, Thambidurai P, Mickymaray S, Nooruddin T (2012) Antimicrobial activity of the ethanolic and aqueous extracts of Salacia chinensis Linn. Against human pathogens. Asian Pacific J Trop Dis 2:S416–S420.  https://doi.org/10.1016/S2222-1808(12)60194-7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyShivaji UniversityKolhapurIndia
  2. 2.Department of BiotechnologyAmity UniversityMumbaiIndia

Section editors and affiliations

  • Vishwas Anant Bapat
    • 1
  1. 1.Department of BiotechnologyShivaji UniversityKolhapurIndia

Personalised recommendations